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“Life is a constant dance between one’s desire and destiny, embrace it.”

– A life lesson I inferred from Sri Swami Sivananda1’s guidance to Dr. APJ Abdul

Kalam2, as quoted from the latter’s autobiography (Wings of Fire: An Autobiography [1]):

“Desire, when it stems from the heart and spirit, when it is pure and intense, possesses

awesome electromagnetic energy. This energy is released into the ether each night, as the

mind falls into the sleep state. Each morning it returns to the conscious state reinforced

with the cosmic currents. That which has been imaged will surely and certainly be

manifested. You can rely, young man, upon this ageless promise as surely as you can rely

upon the eternally unbroken promise of sunrise... and of Spring.”

“Accept your destiny and go ahead with your life. You are not destined to become an Air

Force pilot. What you are destined to become is not revealed now but it is predetermined.

Forget this failure, as it was essential to lead you to your destined path. Search, instead,

for the true purpose of your existence. Become one with yourself, my son! Surrender

yourself to the wish of God.”

1Yoga Guru and Hindu Spiritual Teacher.
2“Missile Man” and former President of India.
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SUMMARY

The ubiquity and utility of data across a wide variety of domains – from science and

technology to commerce, education, healthcare, and beyond – have created an urgent need

for automated systems that help users make sense of large volumes of complex informa-

tion. While these systems can process vast amounts of data, human intuition and expertise

remain critical for many tasks, necessitating effective collaboration between the two (hu-

mans and systems) for accurate and timely decision-making. However, challenges arise

when human users of these systems must provide extensive input (e.g., to convey their ana-

lytic intent) or when automated actions by systems misinterpret user intent or are mistimed,

which can increase users’ perceptual and cognitive load and disrupt the analytic process.

Guidance – or any kind of help, advice, support, suggestion, assistance, or recommen-

dation – offers a promising solution to bridge this ‘knowledge gap’ between human exper-

tise and (humans’ understanding of) system capabilities, while improving the quality and

effectiveness of the analysis process and its outcomes. Guidance during analysis has also

been shown to boost user confidence and refine user expertise, while making the process

more engaging and enjoyable. Building on information visualization (InfoVis), visual ana-

lytics (VA) and human-computer interaction (HCI) literature, this dissertation deepens our

understanding of how guidance can be communicated to/from users and how it can impact

users’ behavior during analysis. Specifically, this dissertation makes contributions across

three thrusts, with broader implications for researchers, developers, and practitioners alike:

1. Design. Design spaces for provenance and guidance communication, derived from a

series of design interventions for guiding users during various data analysis tasks.

2. Develop. Guidance-enriched systems, developed for and evaluated with end-users,

revealing strengths and challenges, and informing the development of future systems.

3. Democratize. A library of guidance-enriched user interface (UI) controls, released

as open-source software, helping developers prototype custom guidance systems.

xxv



CHAPTER 1

INTRODUCTION

The ubiquity and utility of data today has transformed processes across a wide variety of

domains: technology companies analyze product usage patterns to inform future releases;

medical researchers examine patients’ biological markers in clinical trials to understand

the effectiveness of a treatment; universities conduct outreach programs to meet diversity

targets based on past student admission trends; and retailers make decisions about the dis-

tribution of products to stock based on past sales trends. Machines, through their superior

computational power and working memory, can support many of these processes (e.g.,

predicting future product sales using machine learning models) but humans’ dominant per-

ceptual capabilities and adaptive analytic skills are equally desirable, especially when the

stakes are high and/or where domain expertise is essential (e.g., decision-making during

military operations). This necessitates the need for human-in-the-loop approaches to data

analysis that build upon the strengths of both humans and machines [29].

Visual Analytics (VA) is one such human-in-the-loop approach that “combines auto-

mated analysis techniques with interactive visualizations for an effective understanding,

reasoning and decision-making on the basis of very large and complex data sets” [30].

However, while interacting with VA systems, several phenomena may occur that can endan-

ger the analysis outcome and the user experience. For instance, automated computations

may require users to provide a lot of feedforward (e.g., manually configure input parame-

ters [31]) as systems are still poor at guessing the users’ needs. Furthermore, the processes

and outputs of these computations may still need to be explained to the user to instill trust

and enable subsequent refinement (of suboptimal outputs), the communication of which –

through various modalities – may overload users’ cognitive and perceptual memory.

Increasingly, VA systems have adopted concepts of mixed-initiative systems to “enable
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users and intelligent agents to collaborate efficiently” [32] by sharing agency and control

during analysis. A key idea is that these systems can infer a user’s intent and take initia-

tive on the user’s behalf (and vice-versa). For example, following the ‘human is the loop’

viewpoint for VA [33], the system implicitly recognizes analysts’ workflows from their in-

teraction history, and naturally integrates analytics into their ongoing workflow [34]. How-

ever, interacting with these mixed-initiative systems can also deter the analysis process.

For instance, automated actions by the system may be premature or flawed as the system’s

interpretation of the user’s intent might be incomplete or incorrect, requiring users to pro-

vide extensive feedback (e.g., reject or downvote/unlike the output) and feedforward (e.g.,

configuring input parameters). Furthermore, the nature of the system’s actions may also

throw the user off their analysis (e.g., sudden popup notifications that block the UI); and

a combination of these phenomena may require the user and the system to engage in an

efficient dialog to minimize their “knowledge gap” and ensure proper analytic progress.

Guidance in VA is one such “computer-assisted process that aims to actively resolve

the knowledge gap between the user and the system during an interactive analysis ses-

sion” [35, 36]. Guidance also aims to help enhance analysis efficiency, validate insights,

boost user confidence, refine user expertise, and increase awareness of and prevent biases

– all while making the process more engaging and enjoyable [37]. Simply put, guidance is

the act of helping somebody reach a goal by enhancing their skills and competencies, and

enriching their journey toward that goal. We have all sought and received such guidance in

life. For example, parents teach us to ride a bike, teachers hone our skills, and supervisors

support career growth. Similarly, objects like compasses and signposts indicate direction,

while software assistants like Microsoft’s Clippy [38] and robots like Tesla’s Optimus [39]

provide task assistance. Even movie characters such as J.A.R.V.I.S in ‘Iron Man’ and televi-

sion show aids like the lifelines in ‘Who Wants to be a Millionaire?’ offer help. Figure 1.1

and Figure 1.2 show additional examples in the real and reel worlds.

Scientific literature on guidance in the fields of visualization and human-computer inter-
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Figure 1.1: Brief timeline illustrating how humankind has either received or sought some
kind of guidance from god (via prayers), family, map and compass, celestial phenomenon,
lighthouse, human agent, software menu, command line-based documentation, ‘F1’ key-
board key, Clippy [38], Google Search, website onboarding tour, turn-by-turn navigation,
chatbot, home assistant, humanoid robot (e.g., Sofia), and language model (e.g., ChatGPT).

Figure 1.2: Characters and/or objects from movies and television shows that provide(d)
guidance, e.g., Master Shifu (Kung Fu Panda), Yoda (Star Wars), Mr. Miyagi (The Karate
Kid), the broken East Dock signpost (Jurassic Park), Sonny (I, Robot), Tars (Interstellar),
Mufasa (The Lion King), The Marauder’s Map (Harry Potter and the Prisoner of Azkaban),
Map (Dora the Explorer), Tia Dalma’s compass (Pirates of the Caribbean: The Curse of the
Black Pearl), J.A.R.V.I.S. (Iron Man), and the ‘lifelines’ (Who Wants to Be a Millionaire?).

action (HCI) has continuously evolved through definitions, theories, models, frameworks,

techniques, tools, libraries, and empirical evaluations, all aimed at increasing our under-

standing of and optimizing how guidance supports analytical processes. As a matter of fact,

guidance was previously referred to as “help,” “tip,” “advice,” “support,”, “assistance,” or

“recommendation,” until Schulz et al. [40] grouped them under an umbrella term, “guid-

ance.” Schulz et al. [40] also characterized guidance for visualization comprising four

aspects: context or the user’s prior knowledge, domain or the basis of guidance, target or

the goal of guidance, and degree or the amount of guidance. Ceneda et al. [35, 36] then

proposed a conceptual model of guidance for VA, characterizing guidance based on the

knowledge gap of users, the input and the output of a guidance generation process, and
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the degree to which (or amount of) guidance is provided. Collins et al. [37] proposed a

more practical model of guidance, incorporating just-in-time “facilitation” that addresses

not only where and what type of guidance can be provided in the analysis process but also

how it can be effectively implemented. Ceneda et al. [41] then proposed a guidance frame-

work for designers comprising requirements, phases, and quality criteria to design effective

guidance systems. Pérez Messina et al. [42] expanded an existing model of knowledge gen-

eration [43], focusing on the interaction between users and guidance systems, and devel-

oped a typology of tasks to better understand and evaluate current guidance systems. Next,

Sperrle et al. [44, 45] applied concepts of mixed-initiative user interfaces [32] (UI) into VA,

introducing the concept of a “co-adaptive” guidance process, wherein the user and the sys-

tem teach and learn from one another during analysis [46]. Sperrle et al. [47] also provided

a practical guidance framework, including an open-source library (Lotse) for developers to

design custom guidance strategies for their own tools. Additionally, systematic literature

reviews [48, 49, 50] have served as key checkpoints, examining existing literature and re-

vealing opportunities for future research. Informed by prior work, this dissertation aims to

extend literature on co-adaptive guidance processes [44] by building mixed-initiative UIs

that efficiently minimize the knowledge gap between the user and the system [35] through

an intuitive and enjoyable [37] guidance dialog with the system, while ensuring accurate

analytic outcomes. In doing so, this dissertation aims to fill some gaps in existing work and

also introduce fresh ideas for deeper exploration, as described next.

First, Ceneda et al. [35, 36] characterized guidance into three degrees: orienting (basic

guidance through visual cues), directing (useful alternatives that the user may choose to

follow), and prescribing (an automated process which proceeds towards a specified target

along a ‘best’ path). However, from Ceneda et al. [48]’s review of guidance approaches in

visual data analysis, and to the best of our knowledge, there is no system prototype or test-

bed that offer all three degrees of guidance while facilitating a dynamic transition between

them during analysis. The ability to provide different degrees (or amounts) of guidance

4



at different points in time during analysis is essential because the knowledge gap between

the user and the system is always evolving. A new user might require basic, continuous

guidance early into their analysis than an experienced/expert user, who might require more

on-demand, specialized guidance. So I asked: How can we design mixed-initiative UIs that

seamlessly adapt and transition between different guidance degrees during analysis?

Second, assuming the system is able to transition between different guidance degrees,

how can it automatically compute the appropriate degree during analysis? Is it based on

the user’s task, expertise, or preferences (e.g., some users may just like orienting guidance

more, as it may be less distracting)? Or, is it more data- and model-driven, wherein the

system continuously quantifies the user’s knowledge gap, by processing their interactions

with the system, to determine an appropriate degree of guidance (e.g., larger the gap, higher

the degree of guidance to bring the user back on track, quickly)? Additionally, how can the

user explicitly provide contextual information (feedforward) or respond to the system’s

guidance (feedback) for the system to implicitly infer the same? So I asked: How can

the system capture and adapt to user intent (through feedforward or feedback) and take

initiative on the user’s behalf to facilitate an effective co-adaptive guidance process?

Third, Zhou et al. [50]’s state-of-the-art review, of how visualization systems surface

content recommendations (i.e., provide guidance) to users during visual analysis, intro-

duces a four-dimensional design space consisting of the Directness (context), Forcefulness

(level of intrusiveness), Stability (timing), and Granularity (content) of the guidance rec-

ommendations. While this work characterizes prior systems based on the four dimensions,

to the best of our knowledge, there is no design space for consistently visualizing and

interacting with different degrees of the same guidance in the UI. For instance, how can

common UI elements, including the visualizations, UI controls (e.g., range sliders), and

even custom views (e.g., a “Guide Me” panel) present the same guidance via orienting,

directing, and prescribing degrees [35]? Additionally, must guidance always be about a

future action to perform (e.g., interact with a specific datapoint)? Can it be about showing
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the present analysis state or the problem with it (e.g., an underemphasized or uninteracted

datapoint), which then nudges future action(s)? So I asked: How can we model a guidance

state space and generalize its communication via different UI elements in VA systems?

Lastly, my review of visualization and HCI literature revealed that most guidance sys-

tems are bespoke implementations for specific use-cases, with limited reusability. There are

few open-source tools for building guidance systems, limiting broader access, experimen-

tation, and adoption by researchers, developers, and practitioners alike. So I asked: “How

can we equip people with tools to build their own custom, guidance-enriched systems?”

Evidently, these questions cannot be answered solely by building a single prototype

system and conducting few experiments using it. Hence, as part of this dissertation, we

designed and developed a series of mixed-initiative UIs enriched with co-adaptive guidance

to investigate the role and utility of guidance in enhancing VA processes and outcomes. We

also derived design spaces and built open-source tools, democratizing access by enabling

developers to build custom guidance-enriched systems. Figure 1.3 serves as an overview

of this dissertation, which is further detailed in subsequent (sub)sections.

Guidance
(this dissertation)

Develop
[VIS’21 (x2), IUI’21, CHI’23, 
BigData’23, CHI’24, IUI’25*]

Democratize
[VIS’24]

Design
[TVCG 2024*, TVCG 2025*]

Visual Analytics

I am stuck. Help!

???

Never mind…

Guided Visual Analytics

(I think) I am stuck. Help!

Based on your actions, try this.

Exactly what I wanted!!
* under review

Figure 1.3: Dissertation overview: To study how guidance can enhance Visual Analytics
(VA) processes and outcomes. When interacting with VA systems, there is a ‘knowledge
gap’ between (1) users’ abilities, analytic goals, and understanding of the system’s capa-
bilities and (2) the system’s interpretation of the same. Guidance can help bridge this gap,
aligning users and systems to collaboratively achieve the analytic goals, while also boost-
ing users’ confidence and ensuring an engaging and enjoyable overall experience for them.
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1.1 Thesis Statement and Research Goals

The work as part of this dissertation is captured by the following thesis statement:

“Facilitating co-adaptive guidance in mixed-initiative user interfaces, wherein

the user and the system learn from and take initiatives on behalf of each

other, enhances human-data interaction experiences as well as analytic pro-

cesses and outcomes, while promoting the design of new tools that broaden

access for researchers, developers, and practitioners alike.”

To validate the above statement, I break it down into four research goals (RG1–RG4),

listed in Table 1.1 along with corresponding chapter numbers and associated publications:

RG1 Investigate the role of guidance in enhancing analytic processes and outcomes in

various data preparation and analysis workflows (Chapters 3, 4).

A key question this dissertation aims to address is how to design mixed-initiative,

co-adaptive guidance systems that adjusts the level of guidance based on the analysis

needs and user preferences. I derived this goal to first study the different levels of

guidance in isolation, in different analysis contexts, to understand their pros and cons.

To achieve this goal, we first built a visual data preparation system (DataPilot) that

provisions guidance to enhance subset selection workflows. Essentially, this system

models data quality insights (e.g., number of missing values) and data usage insights

(e.g., how often was the data used and where) from large, unfamiliar tabular datasets

to help users select effective subsets for use in downstream applications. These in-

sights are presented as visual cues (to orient the user towards the good and bad as-

pects of data) as well as via interaction affordances such as filtering and sorting (to

help users reduce and organize their search space). A user evaluation revealed that

providing such visual and interactive affordances helps users select smaller, effective

data subsets with greater success and confidence; however, to balance exploration
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versus exploitation, caution must be exhibited about excessively relying on usage in-

formation. Extending DataPilot, we also built DataCockpit, an open-source Python

toolkit with a visual monitoring tool that provides quality and usage insights for nav-

igating and monitoring data lakes (a collection of multiple relational databases).

Next, we built a question-answering system, enhanced with an interactive, self-

service debugging view (DIY), to help users interactively debug (i.e., inspect for,

isolate, and fix errors in) the responses of a natural language (NL) to SQL model.

This system provides end-users with a test-bed wherein they can interact with (1)

the mappings between the question and the generated SQL query, (2) a small-but-

relevant subset of the underlying database, and (3) a multimodal explanation of the

generated query. End-users then employ a back-of-the-envelope calculation debug-

ging strategy, e.g., manipulate the sample database to verify the system’s strategy

(serving as a proxy for executing the query on the production database) and fix er-

rors by selecting the correct mappings. Unlike DataPilot users, who rely on system-

generated guidance to select data subsets, DIY users guide themselves by posing

what-if queries on the sample database to verify the system’s response and establish

trust. An exploratory user evaluation revealed the benefits of using DIY, including a

variety of debugging strategies to assess the correctness of the system’s responses.

RG2 Design a mixed-initiative guidance system, wherein the user and the system learn

from and take initiative on behalf of each other, co-adaptively steering the analytic

process (Chapters 5, 6).

The user evaluations of DataPilot and DIY revealed many pros and cons of commu-

nicating guidance. In particular, I noticed a need for (1) users to convey their intents

and preferences (for the system to provide contextual guidance) and also for (2) sys-

tems to automatically infer the same and take initiatives by intervening depending on

the analysis state and progress (e.g., by providing less/more guidance). To investigate
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these aspects, I derived this research goal to design mixed-initiative systems wherein

the user and the system continuously guide (and adapt to) each other during analysis.

To achieve this goal, we designed a new visualization technique (“interaction traces”)

to model and present the history of a user’s interactions with a visualization sys-

tem, to increase real-time awareness of biased analytic behaviors. Studying user

interactions – or the ways in which users engage with and manipulate data visual-

izations [51] – is a dedicated area of visualization and HCI research called analytic

provenance [52, 53]; it builds upon the database community’s research area focused

on data provenance (or data lineage), which tracks the origin, processing, and trans-

formation history of data [54]. This dissertation employs users’ analytic provenance

as one of the foundations for provisioning guidance as it is a ‘solid’ way for the

system to naturally and continuously learn about the users’ intents and preferences.

Leveraging the technique of interaction traces, we first built a mixed-initiative visual

data analysis system (Lumos), wherein we (1) colored already visited points in a

visualization and (2) compared the distribution of user interactions to the underlying

distribution of the data (to determine if the user over- or underemphasized). Addi-

tionally, we enabled users to compare their own focus against configurable baselines

(i.e. target interaction behaviors), such as (1) the underlying data distribution, (2) an

equal distribution (where each data item is expected to receive equal focus), or (3)

a custom distribution (to satisfy a specific work requirement). By comparing users’

focus against a target, the system then provides contextual guidance, facilitating a

co-adaptive guidance dialog with the user. A user evaluation revealed that interac-

tion traces increased people’s awareness of analytic behaviors, often prompting self-

reflection that sometimes changed subsequent interactions. A second user evaluation

studied how interaction traces help mitigate human biases (e.g., gender bias) dur-

ing decision-making, also suggesting they can help promote conscious reflection on

decision-making strategies, but more such studies are needed for conclusive results.
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Next, we enhanced Lumos with multimodal guidance affordances, wherein the sys-

tem (BiasBuzz) processes the user’s analytic behavior, and depending on the magni-

tude of its ‘knowledge gap’ with the user, provisions continuously evolving (‘adap-

tive’) guidance. Essentially, the user first specifies one or more data attributes to track

(for subsequent bias mitigation); in response, the system provides visual guidance

until a certain threshold of the knowledge gap, exceeding which, the system takes

initiative and triggers an additional haptic stimulus (by vibrating a haptic mouse) to

capture user’s attention with the hope to instantly bring them ‘back on track’. A user

evaluation revealed that the dual guidance modalities (visual + haptic) can increase

analytical awareness in some cases, but the haptic mouse vibrations can be distracting

and disturbing, putting into context the design of such multimodal guidance systems.

RG3 Establish a design space for guidance communication during analysis (Chapters 7, 8).

Based on the designs and findings from subsequent user evaluations of Lumos and

BiasBuzz, I identified commonalities in how the systems provided guidance and how

users responded to it. I derived this goal to generalize these guidance designs, pro-

viding a foundation for building consistent and intuitive guidance-enhanced systems.

To achieve this goal, we established two design spaces: one for communicating

provenance during analysis, and another for doing the same but for guidance. The

provenance design space covers how users can visualize and interact with prove-

nance via encodings and data transformations. This (provenance) design space sets

the foundation for the guidance design space, which introduces additional concepts:

(1) guidance wildcards, (2) a state space of guidance, and (3) different levels (or

amount) of system intervention for the same guidance recommendation.

First, we modeled analytic provenance as an attribute that is available to users during

analysis. We demonstrated this concept via two provenance attributes that track the

recency and frequency of user interactions with data. We integrated these attributes
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into a visual data analysis system (ProvenanceLens) wherein users can visualize

their interaction recency and frequency by mapping them to one or more encoding

channels (e.g., color, size) or applying data transformations (e.g., filter, sort).

Second, we introduced the concept of wildcards, defined as “entities about which

guidance is provisioned,” e.g., data quality and usage (used in DataPilot, DataCock-

pit) or interaction frequency and recency (used in Lumos, BiasBuzz, Provenance-

Lens). These wildcards track four kinds of analysis states: previous state (past),

current state (present), problem with the current state (problem), and the system-

determined future state (future). These states represent different aspects associ-

ated with the same guidance recommendation, as derived from the basic idea of

the ‘knowledge gap’. For instance, when the system determines the user must next

perform a specific interaction, we refer to it as the future state. This system recom-

mendation is based on the ‘knowledge gap’, which we refer to as the problem state,

wherein the system provides guidance about the problem (not the solution). Next,

we refer the user’s current state as the present state. Lastly, we also model a past

state to guide users about their previous state. Together, these states cover the entire

spectrum associated with a guidance recommendation. We integrated these guid-

ance wildcards and states into a visual data analysis playground (Lighthouse) that

additionally offers different levels (or amounts of) of guidance through adaptive UI

elements: visualizations (via visual encodings), UI controls (via data transformations

such as filtering and sorting), and custom panels (via text-based NL explanations).

Based on the analytic needs as deemed automatically by the system or determined

by the user’s expertise and preferences, these UI elements provision different levels

of guidance, making Lighthouse the first adaptive guidance system in visualization

literature. We demonstrated the utility of Lighthouse system through usage scenarios

covering all aspects of the introduced guidance design space.
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RG4 Create tools to help developers build custom guidance-enriched systems (Chapter 9).

Building the above guidance-enhanced systems demanded significant development

skills and time. To enable broader participation in this process, I derived this goal to

develop tools to help other developers (easily) build custom guidance systems.

To achieve this goal, we built a JavaScript library of enhanced UI controls – such as

sliders and dropdowns – that track and dynamically overlay analytic provenance, in

situ and out-of-the-box (ProvenanceWidgets). By showing the user what they have

done so far, these widgets can make the user reflect upon their present choices to

influence subsequent ones. Additionally, if these widgets are preconfigured to show

customized information (e.g., interaction behavior of peers), they can be used to

nudge users in specific directions (e.g., interact with previously overlooked aspects).

This library is open-source, customizable, and universally compatible, enabling de-

velopers to integrate provenance-tracking into existing systems and/or prototype new

systems. Additionally, because provenance is often a basis for providing guidance,

the library can be used to prototype custom guidance-enriched systems. We demon-

strated the library’s utility by replicating the core functionalities of three prior widget

libraries and also conducting a developer-focused evaluation.

In summary, I first investigated the role of guidance in improving analysis workflows

(RG1). Next, I built mixed-initiative guidance systems where the user and the system ‘work

together’ (RG2), from which I derived design spaces (RG3). Lastly, to broaden access, I

built an open-source library of UI controls for tracking and visualizing provenance (RG4).

1.2 Contributions

Through this dissertation, I make the following primary contributions to visualization and

human-computer interaction (HCI) literature, with complementary contributions to database,

ubiquitous computing, deep learning, and artificial intelligence literature:
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Design, Implementation, and Evaluation of Techniques and Systems

• A data preparation system that presents data quality & usage metrics to guide users in

selecting effective subsets from large, unfamiliar datasets (DataPilot [4], chapter 3).

• A mixed-initiative visual data analysis system, that presents real-time visual traces of

a user’s interactions (“interaction traces”), to increase awareness of biased analytic

behaviors against configurable target analytic behaviors (Lumos [27], chapter 5).

• A mixed-initiative system that provides multimodal guidance (visual + haptic) to

mitigate biased analytic behaviors during data analysis (BiasBuzz [7], chapter 6).

Design, Implementation, and Evaluation of System Test-beds / Playgrounds

• A question-answering system, integrated with an interactive, self-service debugging

view, to help users debug natural language to SQL workflows (DIY [26], chapter 4).

• A visual data analysis system as a test-bed for demonstrating (and studying) the

design spaces for provenance communication (ProvenanceLens [11], chapter 7).

• A visual data analysis system as a test-bed for demonstrating (and studying) the

design spaces for guidance communication (Lighthouse [12], chapter 8).

Empirical Evaluations

• A series of in-lab and crowdsourced studies to understand how human biases (e.g.,

gender) impact the way people make decisions during analysis (Left, Right, and Gen-

der [25], section 5.4). We found some evidence that “interaction traces” can increase

awareness of unconscious biases, but additional confirmatory studies are needed.

• A crowdsourced study [10] to understand how the source of guidance–such as AI

model or human expert–impacts people’s perception and usage of guidance during

analysis (chapter 10). We found that the source of guidance matters to users, but

not in a manner that matches received wisdom; users utilize guidance differently,

expressing varying levels of regret, despite receiving guidance of similar quality.
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Design Spaces

• A design space for communicating analytic provenance by modeling it as an attribute,

and mapping it to visual encodings and data transformations during analysis (Prove-

nanceLens [11], chapter 7).

• A design space for communicating guidance by modeling it as a state-space (past,

present, problem, future) and presenting different levels (e.g., 1, 2, 3) via adaptive UI

elements–visualizations, UI controls, external panels (Lighthouse [12], chapter 8).

Open-Source Libraries and Toolkits

• A Python toolkit that helps developers compute data quality and usage information

from data lakes, along with a companion data visualization system to guide database

administrators to navigate and monitor data lakes (DataCockpit [5], chapter 3).

• A JavaScript library of UI controls that helps developers prototype custom web ap-

plications with provenance-tracking (ProvenanceWidgets [9], chapter 9).

1.3 Associated Publications and Attributions

The content of this dissertation is, in part, based on manuscripts either previously published

or under review at different venues (associated publications are listed in Table 1.1).

Even though I am the principal author of this dissertation, the associated publications

are the result of collaborations with my advisor, Alex Endert, as well as mentors and col-

leagues at Georgia Tech, Emory University, Microsoft Research, Adobe Research, and

ETH Zürich. I was the lead author of all but two publications, which I co-led with differ-

ent colleagues: Emily Wall (former PhD student at Georgia Tech) and I co-led the “Left,

Right, and Gender” project described in chapter 5. Jamal Paden (former Bachelor’s student

at Georgia Tech) and I co-led the “BiasBuzz” project described in chapter 6.

To acknowledge the collaborative efforts behind this dissertation, I will use “We” in

applicable sections and “I” when referring to my own thoughts.
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Table 1.1: Dissertation outline and publication summary. An additional relevant publica-
tion – x. Narechania, A., Endert, A., Sinha, A. “Guidance Source Matters: How Guidance
from AI, Expert, or a Group of Analysts Impacts Visual Data Preparation and Analysis.”
(under review) – is briefly described in chapter 10.

Research Goals Chapter Publication(s) [*Equal Contribution]

RG1

Investigate the role of guid-
ance in enhancing analytic
processes and outcomes in vari-
ous data preparation and analysis
workflows.

chapter 3

chapter 4

i. Narechania, A., Du, F., Sinha, A. R., Rossi, R. A., Hoff-
swell, J., Guo, S., Koh, E., Navathe, S. B., Endert, A. “Dat-
aPilot: Utilizing Quality and Usage Information for Subset
Selection during Visual Data Preparation.” ACM CHI, 2023.

ii. Narechania, A., Chakraborty, S., Agarwal, S., Sinha, A. R.,
Rossi, R. A., Du, F., Hoffswell, J., Guo, S., Koh, E., Endert,
A., Navathe, S. B. “DataCockpit: A Toolkit for Data Lake
Navigation and Monitoring Utilizing Quality and Usage In-
formation.” IEEE BigData, 2023.

iii. Narechania, A., Fourney, A., Lee, B., Ramos, G. “DIY:
Helping People Assess the Correctness of Natural Language
to SQL Systems.” ACM IUI, 2021.

RG2

Design a mixed-initiative guid-
ance system, wherein the user
and the system learn from and
take initiative on behalf of each
other, co-adaptively steering the
analytic process.

chapter 5

chapter 6

iv. Narechania, A., Coscia, A., Wall, E., Endert, A. “Lumos:
Increasing Awareness of Analytic Behavior during Visual
Data Analysis.” IEEE VIS, 2021 (IEEE TVCG, 2022).

v. Wall, E.*, Narechania, A.*, Coscia, A., Paden, J., Endert,
A. “Left, Right, and Gender: Exploring Interaction Traces
to Mitigate Human Biases.” IEEE VIS, 2021 (IEEE TVCG,
2022).

vi. Paden, J. *, Narechania, A. *, and Endert, A. “BiasBuzz:
Combining Visual Guidance with Haptic Feedback to In-
crease Awareness of Analytic Behavior during Visual Data
Analysis.” ACM CHI (LBW), 2024.

RG3

Establish a design space for
guidance communication during
analysis.

chapter 7

chapter 8

vii. Narechania, A., Guo, S., Koh, E., Endert, A., Hoffswell,
J. “Utilizing Provenance as an Attribute during Visual Data
Analysis Promotes Self-Reflection: A Design Probe with
ProvenanceLens.” (under review).

viii. Narechania, A., Guo, S., Koh, E., Endert, A., Hoffswell, J.
“Lighthouse: A Design Space for Guidance Communication
during Visual Data Analysis.” (under review).

RG4

Create tools to help developers
build custom guidance-enriched
systems.

chapter 9 ix. Narechania, A., Odak, K., El-Assady, M., Endert, A.
“ProvenanceWidgets: A Library of UI Control Elements to
Track and Dynamically Overlay Analytic Provenance.” IEEE
VIS, 2024 (IEEE TVCG, 2025).
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CHAPTER 2

RELATED WORK

2.1 Information Visualization

Figure 2.1: The InfoVis Reference Model by Card, Mackinlay, and Shneiderman [55].

Information Visualization (InfoVis) is a technique for simplifying complex data by cre-

ating visual representations of abstract concepts, processes, or datasets [56]. In doing so,

users can reduce cognitive load, allowing improved reasoning during analytical tasks. Card,

Mackinlay, and Shneiderman [55] introduced the first InfoVis reference model, which out-

lines a step-by-step process for transforming abstract data into an interactive visual form

to solve a given task (Figure 2.1). In this model, “Raw Data” is first transformed into a

computer-readable format such as “Data Tables”. Next, visual marks and encodings, such

as color and size, are mapped to this data to create “Visual Structures”. Finally, one or

more such visual representations are arranged and transformed into “Views” to make rel-

evant information easily accessible. Interaction is integral to this entire process, enabling

users to adjust each step of the model to influence the final outcome. Although InfoVis gen-

erally aids visual data exploration, it can struggle with the scale and complexity of modern

datasets, necessitating more automated approaches, as described next.
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2.2 Visual Analytics

To overcome issues associated with the scale and complexity of modern datasets, data

mining [57] techniques such as clustering, dimensionality reduction, and anomaly detection

can be applied. However, even these algorithmic solutions, while fast and accurate, often

produce black-box outputs that are difficult to interpret, necessitating perceptual tools such

as interactive visualizations that enhance human cognition and facilitate decision-making.

Recognizing the superior computational power and memory of machines alongside the

perceptual and adaptive analytic skills of humans, researchers adopted human-in-the-loop

approaches to leverage the strengths of both. Visual Analytics (VA) is one such human-

in-the-loop approach that combines automated analysis techniques with interactive visu-

alizations for an effective understanding, reasoning, and decision-making based on large,

complex data sets [58, 30]. VA systems incorporate concepts from mixed-initiative systems

to “enable users and intelligent agents to collaborate efficiently” [32] by taking initiatives

on behalf of each other during analysis. Recently, VA systems have also embraced a ‘hu-

man is the loop’ perspective–centralizing the role of the user–by enabling the system to

implicitly infer the user’s workflow(s) and seamlessly integrating analytics [33].

VA researchers have proposed various process models [59, 58, 60, 29, 43, 61, 62]

that describe how humans gather information, draw conclusions, formulate and evaluate

hypotheses, extract evidence, and refine their understanding during analysis–also known as

the “sensemaking” process. Although details vary, all VA models (implicitly) include the

three key components of InfoVis models: (1) data, (2) human, and (3) visualization, along

with a fourth component, (4) analytic model, which facilitates the sensemaking process.

Pirolli and Card [59] first studied the sensemaking process by performing a cognitive

task analysis with intelligence analysts (Figure 2.2). They proposed that the sensemaking

process could be roughly described by two loops: (1) a foraging loop to search for infor-

mation and (2) a sensemaking loop to resolve an understanding of the information. Each of
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Figure 2.2: The Sensemaking Process Model by Pirolli and Card [59].

these higher-level processes is then decomposed into a series of cognitive actions, e.g., the

foraging loop involves iteratively finding evidence from external data sources, compiling

the evidence, and then skimming it to look for relevant information.

Alternatively, Klein et al. [60] studied the sensemaking process as an iterative framing

and re-framing of information (Figure 2.3). They postulated that when examining data,

analysts begin with some frame of reference and then continuously compare, refine, and

create new frames throughout the analysis to refine their understanding of the data.

Next, Green et al. [29] presented a human cognition model that details the often-

complex relationship between humans and computers during the VA processes of knowl-

edge creation and hypothesis generation, describing how tasks and information should be

distributed across the two to leverage their complementary strengths (Figure 2.4).

Next, Keim et al. [61] presented the VA Reference Model, describing the relationships

between data, visualization, models, and knowledge (Figure 2.5). Sacha et al. [43] later ex-

tended this model to describe the process of knowledge generation in terms of the related

roles of the human and the computer. This extended model consists of (1) an Exploration

Loop for describing how findings are extracted from the data, thanks to exploration activ-
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Figure 2.3: The Data-Frame Model of Sensemaking by Klein et al. [60].

ities; (2) a Verification Loop where the findings are grouped together to prove or disprove

any working hypotheses and form insights; and (3) a Knowledge Generation Loop where

the insights are condensed into new knowledge (Figure 2.6).

Recently, Booth et al. [62] surveyed nine process models from the VA and human-

computer interaction (HCI) literature and presented a granular, descriptive model of human

decision-making in VA. They examined the humans and computers presented in the models

(entities), the divisions of labor between the entities (both physical and role-based), the

behavior of the entities as constrained by their roles and agency, and the elements and

processes which define the flow of data both within and between entities.

We drew inspiration from these models and applied them in various ways to design and

develop a series of guidance-enriched VA systems as part of this dissertation.

2.3 Analytic Provenance

Data provenance (or data lineage) documents the history of a data item, including its source,

the processes it has undergone, and any transformations applied [54]; as a type of metadata,

it ensures data authenticity and enhances its reusability. In the context of information visu-
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Figure 2.4: The Human Cognition Model by Green et al. [29].

Figure 2.5: The VA (Visual Analytics) Reference Model by Keim et al [61].

alization and visual analytics (VA), this concept extends to capturing interaction–or how

users engage with and manipulate data visualizations [51]. Interactions may occur through

input devices like keyboards and mice [63, 64] or through modalities including speech [65],

touch [65], eye gaze [66], hand gestures [67], and facial expressions [68], among others.

This dissertation focuses on interactions via input devices (keyboards, mice)–such as typ-

ing, clicking, hovering, zooming, panning, and brushing–in a web browser-based user in-

terface. Through such interactions, users can advance a visualization from one state to

the next to effectively navigate and sensemake complex information [29] and facilitate hu-

man reasoning and decision-making [69]. Interaction data also contains rich information

about users, such as their task performance and personality traits, that can help refine sys-

tems [70]. Because our memory has a finite capacity to track and remember everything [71,
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Figure 2.6: The Knowledge Generation Model by Sacha et al. [43].

72], interaction data can also be used as a record of the analysis process. An entire area

of visualization and HCI research, known as analytic provenance, studies how interaction

data with visualizations can be used to enhance analysis [52, 53], as described next.

Ragan et al. [53] present an organizational framework comprising five types of prove-

nance information–data, visualization, interaction, insight, rationale–and six purposes for

why they are desired in the field of visual analytics–recall, replication, action recovery,

collaborative communication, presentation, meta-analysis (Figure 2.7). Xu et al. [49]’s

survey notes that provenance has been used to support sensemaking [73, 74] and decision-

making [75] with data, evaluate the usefulness of visualization systems [76, 77], design

adaptive systems [35, 78], improve the performance of machine learning models [79], re-

play or replicate analysis sessions [80, 81], and automatically generate summary reports of

an analysis session [82, 83]. Provenance has also been shown to enhance analysis through

more unique data discoveries [84, 85], improved confidence [86] and inspiration [87] lev-

els, increased contextual awareness of previously visited data [88] and recall [87].

Today, provenance tracking occurs in data analysis tools [52], code editors [89], com-

putational notebooks [90, 91], workflow modeling systems [80, 92], collaborative environ-

ments [93, 94, 95], websites [96, 97], and video games [98, 99, 100]. Below we describe

tools and techniques for capturing, modeling, and visualizing provenance.

Capturing Provenance. By default, interaction data is ephemeral, which means once it

has triggered the appropriate system response, the information contained in the interaction
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Figure 2.7: Ragan et al.’s [53] organizational framework of provenance types and purposes.

is discarded. To avoid such data loss, several logging tools and frameworks have been

developed to record and analyze interaction data [96, 97, 101, 102, 103, 104, 105, 106]. A

prominent example is Trrack [105], which is an open-source library to capture provenance

information in websites (e.g., clicks, hovers) to later visualize or replay it.

Modeling Provenance. Several metrics have been proposed that characterize user be-

haviors from provenance information. For instance, Feng et al. [107] quantify exploration

uniqueness and exploration pacing as users interact with points in a scatterplot. Ott-

ley et al. [108] use a hidden Markov model to capture user attention to predict clicks in

a visualization. Gotz et al. [109] model and visualize the provenance of how a user’s subset

selections of the data differ from the dataset as a whole. Zhou et al. [110] introduce a for-
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mal model of focus based on user interactions defined by (1) type of action and (2) focus

of the action in the form of an additive model. Wall et al. [111] define metrics for quanti-

fying bias by computing deviations of a user’s interactions from a baseline of “unbiased”

behavior based on (1) type of interaction and (2) object of interaction.

Visualizing Provenance. Heer et al. [112] have summarized an entire design space for

visualizing interaction histories (or provenance). Our review revealed that provenance in-

formation is often displayed on or near the object of interaction, e.g., highlighting previ-

ously visited or interacted visualizations [84, 94, 95] or specific regions within them [88],

regions and hyperlinks on a webpage [113, 106], options and ranges in UI controls [85],

lines of code in a code editor [89], or a document’s authorship and readership history [114,

115], among others. Other provenance visualizations are separately visualized in an exter-

nal view or application, e.g., as a graph [80, 105, 116, 117, 118].

This dissertation extends visualization and HCI literature via multiple contributions

to all three aspects of analytic provenance–capturing, modeling, and visualizing: a new

provenance visualization technique [25] that was later expanded into a design space [11],

multiple provenance-enabled visual data analysis systems [25, 27, 7, 11], and an open-

source library for provenance-tracking [9]. Studying analytic provenance is essential as it

forms the basis of provisioning guidance during analysis, as described next.

2.4 Guidance

Recall guidance is the act of helping somebody in various ways to reach a goal. Below, we

describe existing visualization and HCI literature on guidance including its many roles and

definitions, characterizations, models, frameworks, and tool examples.

Roles and Definitions of Guidance. Although Cambridge Dictionary defines guidance

as “help and advice about how to do something or about how to deal with problems con-

nected with your work, education, or personal relationships” [119], the role and definition
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of guidance in visualization and HCI literature has evolved over the years. Smith and

Mosier [120] first defined guidance as “a pervasive and integral part of interface design

that contributes significantly to effective system operation.” Dix et al. [121] stressed the

need for guidance to bridge the gap between the user’s knowledge and the tool’s oper-

ational requirements. Thomas and Cook then introduced a complementary term to guid-

ance, called “facilitation”, to describe a VA system’s role in supporting human data analysis

more broadly [122]. Until 2013, guidance approaches were interchangeably referred to as

any kind of “help,” “tip,” “advice,” “support,” “suggestion,” “assistance,” or “recommen-

dation”, before Schulz et al. [40] grouped them under an umbrella term called “guidance”–

defining it as “methods that have the goal of providing dynamic support to users, such as

guiding data exploration or assisting users when choosing visual mappings for presenting

analysis results.” Extending this work, Ceneda et al. [35] defined guidance as “a computer-

assisted process that aims to actively resolve a knowledge gap encountered by users during

an interactive visual analytics session.” Recently, Collins et al. [37] determined that the

role of guidance is to enhance analysis efficiency, validate insights, boost user confidence,

refine user expertise, and increase awareness of and prevent biases.

Characterizations of Guidance. Engels [123] first characterized guidance into (1) a

“what” dimension that defines the problem, which is decomposed into an “initial state”

at the beginning of the analysis and a “goal state” that has to be reached; and (2) a “how”

dimension that describes the functioning mechanisms to solve the problem, which are the

discrepancies between the initial and goal states. Schulz et al. [40] characterized guidance

for visualization comprising four aspects: context or the user’s prior knowledge, domain or

the basis of guidance, target or the goal of guidance, and degree or the amount of guidance.

Extending this work, Ceneda et al. [35, 36] characterized guidance into (1) (what we

refer to as) the knowledge gap between the user and the system; (2) an input that consists

of a list of resources the process could exploit to generate the necessary guidance, and an
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Figure 2.8: Ceneda et al. [35]’s characterization of guidance in Visual Analytics systems
across “knowledge gap” (type and domain), “input and output”, and “guidance degree”.

output that is the computed answer to the user’s knowledge gap and the visual mean(s) to

communicate this answer; and (3) a degree, indicating the amount of assistance provided

by the answer–orienting, directing, or prescribing (Figure 2.8). Orienting guidance is the

lowest guidance degree that exploits the user’s perceptual abilities and provides them with

visual hints to make analytic progress. Orienting guidance is more focused on providing the

means to an answer to the problem at hand instead of directly providing a ready-made an-

swer. Prescribing and directing are higher degrees that are meant to provide a high level of

assistance to the user, in the form of one (best) or more (a ranked list) suggestions, respec-

tively. To determine which degree of guidance to provide and when, Ceneda et al. [124]

conceptualized a guidance decision tree (Figure 2.9) to help designers.

Figure 2.9: A decision tree to assess how much guidance to provide during analysis [124].

Collins et al. [37] later proposed a more practical characterization of guidance, incor-

porating just-in-time “facilitation” that addresses not only where and what type of guidance

can be provided in the analysis process but also how it can be effectively implemented.
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Figure 2.10: Typology of system guidance tasks by Pérez-Messina et al. [42]. It spans the
three dimensions of the multi-level visualization task typology [125] plus a new dimension
that captures the analytical objective of an analysis phase (when?). It allows describing: the
system task intent (why?) by different detail levels (aim, first- and second-order degree),
also with an accompanying explanation task (explain); the suggestion method (how?) in
terms of data manipulations and means of communication; and the information inputs and
type of output relative to the targeted user task (what?).

Recently, Pérez-Messina et al. [42] proposed a typology of system guidance tasks to de-

scribe and analyze guidance systems in VA and their interaction with users and their tasks

(Figure 2.10). Compatible with and built upon Brehmer and Munzner’s multi-level visual-

ization task typology [125], this taxonomy spans the three main dimensions of user tasks:

Why (describing the intent of the guidance), How (showing how an intent is translated into

actions) and What (input/output). In addition, this taxonomy includes an extra dimension:

the When, capturing the high-level analytical objective of an analysis phase.

Conceptual Models of Guidance. Ceneda et al. [35, 36] conceptualized guidance in VA

into a model that aims to show the fundamental mechanisms of guidance in relation to the

visualization process it seeks to assist; they adapted and extended van Wijk’s visualization

model [126], as shown in Figure 2.11. Van Wijk’s model was created to represent only the

visualization process, similar to the model by Pirolli and Card [59]; it did not convey any

special characteristics of VA, similar to models by Keim and Sacha [61, 43].
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Figure 2.11: Ceneda et al.’s [35, 36] conceptual model of guidance in Visual Analytics
(VA), adapted from van Wijk’s [126] model (in gray) with newer guidance-related blocks
(in blue); system aspects of guidance are on the left while user aspects (U) are on the right.

Ceneda et al. [35, 36] applied guidance to VA by including analytical processes into van

Wijk’s visualization model. Each square box represents different sources of input required

for generating guidance or the output produced by active guidance processes; each circle

represents the various analysis processes. Simply put, boxes are like artifacts and circles

are like functions. Visual and analytical means (V) transform data [D] into images [I] based

on some specifications [S]. The images are then perceived (P) to generate some knowledge

[K]. Based on their accumulated knowledge, users can interactively explore (E) the data

by adjusting the specifications (e.g., choose a different clustering algorithm or change the

perspective on the data). As in the original model, gray boxes and circles abstract the entire

VA process; to this, new components in blue are added to represent the specific aspects of

guidance (boxes and circles) and the relations between each other (arrows).

Pérez-Messina et al. [42] (Figure 2.12) conceptualized guidance in VA by expanding

Sacha et al.’s Knowledge Generation Model [43] (Figure 2.6). In particular, they added a

new “Guide Side” (bottom portion of Figure 2.12), opposite to the User Side, that inter-

acts with the system through a Guidance Loop, which is controlled by an Inference Loop.

The information flowing from the bottom Guide Side to the top User Side can influence

subsequent user actions and the overall analysis progress.
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Figure 2.12: The Model of Knowledge Generation in Guided Visual Analytics (VA) show-
ing how guidance contributes to the progress of the analysis [42]. The different arrows
model the interactions between User (top) and Guide (bottom). Downstream (User-to-
Guide) and Upstream (Guide-to-User) arrows signal the two directions of information flow.
This model is an expansion of Sacha et al.’s [43] Knowledge Generation Model.

Conceptually, Horvitz [32] advocated for guidance-based systems to be mixed-initiative

in nature, wherein both the users (human actors) and the system play an active role during

analysis, by taking initiatives on behalf of each other. Sperrle et al. [44] then introduced

the concept of co-adaptive guidance, building on the principles of initiation and adaptation.

They argue that both the user and the system must adapt their data-, task- and system-/user-

models over time. They propose reasoning about the guidance design space by introducing

the concepts of learning and teaching that complement the existing dimension of implicit

and explicit guidance, thus, deriving the four guidance dynamics user-teaching, system-

teaching, user-learning, and system-learning (Figure 2.13).
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Figure 2.13: In a co-adaptive guidance process, both the system and the user initiate guid-
ance with the goal of learning (adapting their own data, task and system/user models) or
teaching (adapting the models of the other), to improve the shared analysis process [127].

Framework for Designing Effective Guidance Systems. Effective guidance refers to

mechanisms that should help analysts complete a task while overcoming possible issues

that could arise during the process. Ceneda et al. [41] list a set of qualities that influence

the effectiveness of guidance in practical VA applications: (1) Available–users should be

aware that guidance is available and accessible at any time; (2) Trustworthy–guidance must

reduce uncertainty without adding confusion; (3) Adaptive–guidance systems should adjust

to the current analysis state, dynamically changing knowledge gap; (4) Controllable–users

need control to adjust, choose, or dismiss guidance as needed; and (5) Non-Disruptive–

guidance should maintain analysis flow without interrupting the user’s mental map.

Figure 2.14: Design framework and evaluation criteria for effective guidance systems [41].
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Based on these quality criteria, Ceneda et al. [41] defined a framework for designing

guidance in practice. This framework comprised four nested steps aimed to identify and

delineate a set of issues (i.e., knowledge gaps) that the user might encounter during the

analysis (Figure 2.14), thereby pushing the designer to design appropriate countermeasures

(e.g., guidance mechanisms) in a specific analysis environment; essentially, the quality

criteria serve as guidelines for choosing from alternate designs.

Examples of Guidance Systems in VA. Multiple systematic literature reviews [48, 49,

50] have examined existing guidance-based tooling. For instance, orienting guidance has

been provided using (1) visual properties such as highlighting (e.g., contrasting the color

hue and intensity of important elements with those of the surroundings allows the users to

quickly and pre-attentively identify them [84]), (2) layout and form (e.g., the 2D position,

spatial grouping, and marks can attract our attention faster [128, 129]), (3) motion (e.g.,

flicker and animations are important pre-attentive visual features [130]), and (4) sugges-

tions (e.g., analytical options for the user to proceed toward their goal [131].).

Next, directing guidance has been provided in data preparation to, e.g., suggest most

suitable functions to transform the data [132], clean and polish the data [133], and sup-

port feature selection for data profiling [134]. In the visualization community, directing

guidance has been provided to suggest different visualization alternatives, e.g., based on

perceptual characteristics (e.g. [135, 136, 137]).

Finally, prescribing guidance has been offered by Horvitz et al. [38]’s system to soft-

ware users by exploiting Bayesian user modeling to transform interaction into useful hints

related to the user’s intentions. Additionally, Chen and Scott et al. [82]’s system automati-

cally calculates annotations of data snippets selected by the user; the user can directly mod-

ify the annotation, which again affects the generation of future annotations. Ip et al. [138]’s

system guides the user through the visualization of large images by calculating and provid-

ing a step-by-step exploration of the most promising and interesting views.
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Ceneda et al.’s [48]’s review revealed that orienting is the most common degree of guid-

ance followed by directing and then prescribing, with the number of approaches providing

multiple degrees very limited, and no approach providing all three. We hypothesize sup-

porting multiple guidance degrees can enable effective and natural guidance solutions since

they would allow for dynamically adapting the guidance degree as needed; this dissertation

contributes such a co-adaptive, dynamic guidance system (described in chapter 8).

Figure 2.15: Lotse: A Practical Framework for Guidance in Visual Analytics [47].

To enable developers to build custom guidance-based systems, Sperrle et al. [47] devel-

oped Lotse (Figure 2.15), an open-source library that enables specifying guidance strate-

gies in definition files and converting them to a running guidance system. Lotse tries to

model the entire guidance process into YAML-based files, presenting the first step toward a

declarative grammar of guidance. Lotse also monitors the analysis state to determine which

guidance strategies to employ and which suggestions to provide, while facilitating devel-

opers to customize system behavior on acceptance or rejection of a suggestion. Through

Lotse, developers are freed from implementing boilerplate code to orchestrate guidance;

instead, they can focus on the design of effective strategies in the UI. Inspired by and to

complement Lotse, this dissertation contributes an open-source frontend library of user

interface controls for dynamically tracking and visualizing provenance as guidance [9].

2.5 Research Methodologies

When designing and evaluating visual analytics (VA) systems, appropriate considerations

should be made about the context. For example, humans have traditionally been a central
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figure in the design of VA systems. The phrase, ‘human-in-the-loop’ highlights the impor-

tance of user feedback to steer analytic processes [32]. Recently, this focus has since deep-

ened to ‘human-is-the-loop’, reflecting a shift towards embedding analytics more seam-

lessly within users’ workflows [33]. Below we review methodologies in visualization and

HCI literature that focus on other aspects such as the analysis domain, data, and task.

Figure 2.16: The nested model for visualization design and evaluation by Munzner [139].

First, Munzner introduced a practical framework for designing and evaluating data vi-

sualizations, structured into four nested stages: defining the domain problem, mapping

problem characteristics to abstract data types, selecting visual encodings and interactions,

and implementing algorithms for chosen representations [139].

Figure 2.17: Design triangle depicting data, users, and tasks, that are major considerations
during the design and implementation of visual analytics systems [140].

Next, to guide designers in choosing appropriate visualization and automated analysis

techniques, Miksch and Aigner [140] proposed a design triangle framework (Figure 2.17)

that addresses three main questions about the types of data users are working with (data),

the users themselves (user), and the general tasks these users aim to accomplish (task).
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Figure 2.18: Nine iterative stages of the design study framework [141], grouped into three
categories: a precondition phase, outlining steps to complete before beginning a design
study; a core phase, detailing steps for carrying out the study; and an analysis phase, where
researchers reflect on the accomplished work and write a paper at the study’s conclusion.

Next, Sedlmair et al. [142] defined the design study methodology as “a project in

which visualization researchers analyze a specific real-world problem faced by domain

experts, design a visualization system that supports solving this problem, validate the de-

sign, and reflect about lessons learned in order to refine visualization design guidelines.”

This methodology is structured into three main phases: a precondition phase, outlining

essential steps to complete before beginning a design study; a core phase, detailing the

primary steps for carrying out the study; and an analysis phase, wherein researchers reflect

on the work accomplished and in the end, write a paper (Figure 2.18).

Lam et al. [143] classified evaluation methodologies from 361 papers into seven sce-

narios, based on their focus on process or visualization. Process-oriented scenarios assess

work practices, support analytical reasoning, evaluate communicative value, and facilitate

collaborative analysis. Visualization-focused scenarios measure people’s task performance

and gather subjective feedback from them, and/or study an algorithm’s characteristics.

For the works in this dissertation, we generally followed a user-centered design process

involving a combination of interviews to understand the domain, design brainstorming ses-

sions, system development, and evaluation for feedback and refinement.
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CHAPTER 3

GUIDANCE FOR IMPROVING DATA PREPARATION WORKFLOWS

In this chapter, I describe two guidance systems that use data quality and usage informa-

tion to improve data preparation workflows including navigation, discovery, selection, and

monitoring. Essentially, these systems guide users by presenting static, precomputed in-

sights about data quality and usage via visual cues and interactive affordances. This chapter

is based on work published at ACM CHI 2023 [4] and IEEE BigData 2023 [5] and patented

by Adobe Research [16, 17, 18].

3.1 Motivation and Background

Data are never truly raw [144] but still require processing through cleaning, integration,

transformation, and selection before they can be utilized for their intended purposes [145].

Modern organizations often ingest all incoming data in their native form with the intent of

performing analytics later [146]. The inherent information overload due to this “load-first”

philosophy poses several challenges in data navigation and knowledge discovery [147, 148,

109]. No single user knows about all the datasets, let alone what each one contains; this

unfamiliarity leads to adverse consequences. Consider a user task, “analyze a large e-

commerce dataset and build a dashboard visualizing recent geographic trends for predict-

ing future sales.” To perform this task, users must first identify relevant data attributes per-

taining to customers’ locations (e.g., “ZipCode”) and then select the desired data records by

applying a temporal filter (e.g., monthly). This operation of reducing the size of the dataset

is referred to as subset selection (or data reduction) [149, 150, 151]; it can be performed in

two ways: feature set reduction (columns of a tabular dataset) or sample set reduction (rows

of a tabular dataset). Feature set reduction is common when training ML models wherein

users either drop irrelevant features [152] or reduce them through dimensionality reduc-
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tion techniques [149]. Sample set reduction is common during market segmentation [153]

wherein select groups of consumers are shortlisted to satisfy segment specific goals.

Unfortunately, subset selection can be challenging. New users unfamiliar with the data

may adopt “trial and error” inspection strategies [154] resulting in the selection of irrele-

vant, inferior attributes while missing out on important attributes, undermining the outcome

of the subsequent analysis. Even experienced users may rely upon their own past usage and

not explore new attributes of a new dataset, also putting the analysis outcome into question.

Furthermore, users may spend more time finding relevant data than performing the analytic

task at hand [148]. So we asked, “How to design user interfaces that provide guidance

to users to analyze large, unfamiliar datasets and select relevant and effective subsets for

downstream analytics tasks such as building dashboards and customer segmentation?”

In response, we interviewed 14 data workers from a large technology company who

select data subsets (extract a smaller set of attributes and records from a larger dataset)

for making dashboards (data analysts), training machine learning models (data scientists),

and running digital marketing campaigns (marketers). All data workers communicated

the importance of the quality of data; some of them, who relied on others for preparing

these data subsets as they lacked the necessary skill set, also reflected on the potential of

surfacing other data characteristics such as their usage across users. This feedback from the

data workers call for an interactive, self-service tool that facilitates data preparation with

two kinds of auxiliary information: (1) quality and (2) usage.

Prior art defines data quality from multiple perspectives: consumer [155], business [156,

157, 158, 159, 160], and standards-based [161, 162]. A single definition covering the dif-

ferent contexts is difficult [155]. Contextual to this work, we define quality as “the valid-

ity and appropriateness of data required to perform certain analytical tasks.” Quality is

important because data are often messy, and organizations’ “load-first” philosophy often

results in “big data graveyards” [163] comprising large volumes of missing, erroneous, and

irrelevant information. Ideally, these data deficiencies would trigger corrective measures or
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even non-use; however, most organizations fail to maintain data quality standards [164] as

“everyone wants to do the [ML] model work, not the data work” [165].

Regarding data usage, we define it as “the historical utilization characteristics of data

across multiple users,” inspired by the “data utility” descriptor [166]. Users often col-

laborate at work [167, 165, 168, 169, 170], but much more around code than around

data [171]. Understanding how data are created and shared inside an organization is under-

explored [171]. We believe leveraging usage logs of current and past users, and meta-data

can be one way to guide other users. In response, we modeled quality and usage informa-

tion from the data, meta-data, and corresponding usage logs, and built DataPilot to visually

present it to users to guide them during subset selection and analysis, as described next.

3.2 DataPilot

3.2.1 Design Goals

We derived six design goals based on our interviews to guide subsequent development.

DG1. Facilitate data preparation and visual data analysis, in situ. This goal supports

subset selection and analysis within one tool to minimize tool-switching.

DG2. Model data quality and usage information as standardized scores. This enables

non-technical users to interpret data quality via standardized scores (out of 100),

derived through heuristics.

DG3. Provide visual guidance about data quality and usage. This entails offering guid-

ance on data quality and usage, while balancing user agency and control.

DG4. Provide interaction and specification affordances for data discovery, subset se-

lection, and visualization dashboard creation. This self-service goal includes UI

controls to aid inspection of quality and usage data.

DG5. Enable control and context through configurability. This allows users to configure

visibility for data quality and usage components, offering adjustable levels of control.

DG6. Design for scalability and performance. This goal aims to enhance user experience
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by managing complex tasks through a scalable backend [172].

3.2.2 Modeling Data Quality

We modeled three dimensions of quality at an attribute-level: completeness, correctness,

objectivity and two dimensions at a record-level: completeness, correctness (DG2).

3.2.2.1 Attribute-level Quality Dimensions

Completeness is the percentage of non-missing values among an attribute’s values, e.g.,

if 10 of 50 attribute values are nulls or empty strings, its completeness is 100*(50-10)/50 =

80%. Completeness can help users detect sparse attributes that can, for example, alter how

well ML algorithms can make accurate predictions.

Correctness is the percentage of correct values among an attribute’s values, e.g., if 5 out

of 50 attribute values are incorrect, then its correctness is 100*(50-5)/50 = 90%. To calcu-

late correctness, businesses can preconfigure SQL-like constraints in the DataPilot source

code through relations (>,<,=), range (BETWEEN), pattern matching (LIKE), and mem-

bership (IN) operators; e.g., WHERE email NOT LIKE ‘% @ %. %’ computes the number of

records with incorrect email addresses. With correctness, users can assess the accuracy of

individual attributes.

Objectivity is the extent that values conform to a target distribution, e.g., if the Gender

attribute has 120 males and 45 females, then it is evidently skewed towards males and

hence, from a gender equality standpoint, not objective. We utilize Wall et al.’s [111] At-

tribute Distribution (AD) metric for measuring the deviation between the observed and the

expected objective distribution (baseline); AD scores range from [0,1] so we standardize

them by multiplying by 100. With this dimension, users can detect anomalous phenomena,

e.g., if the majority of applicants are of a specific gender, against expectations. Like cor-

rectness, businesses can preconfigure objectivity constraints in the DataPilot source code.
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3.2.2.2 Record-level Quality Dimensions

Completeness is the percentage of non-missing values in each dataset record, e.g., if a

record has 50 values (one for each attribute), 20 of which are nulls or empty strings, then

its completeness is 100*(50-20)/50 = 60%. With this dimension, users can, e.g., discard

sparse customer profiles (records) for marketing campaigns where success is determined

by the profiles’ richness.

Correctness is the percentage of correct values in each record, e.g., if a record has 50

attribute values, 15 of which are incorrect (based on set constraints), its correctness is

100*(50-15)/50 = 70%. With this dimension, marketers can discard customer profiles

(records) with invalid email addresses and social media handles that are useless for run-

ning marketing campaigns.

Objectivity is inapplicable for record-level dimensions as each record comprises values

from different, incomparable attributes.

Overall Scores: Aggregations and Customizations. We compute a configurable heuristics-

based overall score for each attribute and record that defaults to the arithmetic mean of the

corresponding dimensions. Based on work by Vaziri et al. [173], users can specify different

weights for different dimensions (e.g., a user might prefer an overall dimension that com-

prises 75% completeness and 25% correctness, and ignores objectivity) as well as different

attributes and records (e.g., a digital marketer may want to weigh the “Phone” attribute

more than “Email Address” for correctness).

3.2.3 Modeling Data Usage

We modeled usage information (DG2) across three dimensions at an attribute-level: in-

subsets, in-filters, and in-visualizations and one dimension at a record-level: in-subsets.
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3.2.3.1 Attribute-level Usage Dimensions

In-subsets score of an attribute is the percentage of users who selected that attribute to

be in their subset for later use, e.g., if 15 out of 20 users select a feature for training an ML

model, then the in-subsets score is 100*15/20 = 75%. With this dimension, new users can,

e.g., perform quick and efficient analysis by selecting highly used (important?) attributes

based on subsets of prior users.

In-filters score is the percentage of users who applied a filter on that attribute, e.g., by

choosing a multiselect dropdown option (Gender=“Female”) or dragging range slider han-

dles (Age ∈ [40,50]). With this dimension, digital marketers can, e.g., determine segmenta-

tion rules (filter criteria to pick certain customer profiles) for running marketing campaigns

based on previous ones. Note that in-filters is not a subset of in-subsets; users can filter (or

not) by an attribute and (not) select it in their subset and vice versa.

In-visualizations score is the percentage of users who assigned that attribute to one or

more visual encodings (e.g., X axis) and utilized the resultant visualization in a dashboard.

With this dimension, users can refer to popular (important?) attributes from past business

reports to assist with the design of present ones.

3.2.3.2 Record-level Usage Dimensions

In-subsets score of a record is the percentage of users who selected that record to be in

their subset (as a result of filters). With this dimension, users can, e.g., select a subset of

popular (important?) records and re-run new marketing campaigns by targeting customer

profiles (records) from previous successful campaigns. This dimension is in essence the

same as record-level in-filters and in-visualizations usage dimensions because DataPilot

treats a filtered dataset as the selected subset that is used in the visualization.

39



Overall Scores: Aggregations and Customization. Like overall quality, we computed

a heuristics-based overall score for each attribute and record, but as the maximum of the

constituent dimensions. Because attributes are seldom utilized simultaneously in subsets,

filters, and visualizations, choosing mean would result in low scores that would be inef-

fective and demotivating for the user; hence, we chose maximum. Users can ignore one or

more usage dimensions, e.g., In-filters usage, if it is irrelevant to their use-case.

3.2.4 User Interface

We integrate both quality and usage information into a visual data preparation and analysis

tool, DataPilot. DataPilot facilitates preparing a subset from a large tabular dataset for

building a visualization dashboard. Specifically, DataPilot computes a standardized score

out of 100 for each of the quality and usage dimensions, e.g., in-subsets score for the

“Profit” attribute is 94 out of 100. DataPilot also presents visual cues to guide users about

the “good” and “bad” aspects of their data, e.g., highlighting missing and incorrect data

values by coloring them in red. Lastly, DataPilot provides graphical user interface (GUI)

controls as interaction affordances to assist users during subset selection, e.g., range sliders

to filter out less popular data and sorting widgets to order and group data with similar

characteristics together. To support these subset selection and analysis affordances in the

same tool (DG1), we designed the DataPilot UI to have a three-step workflow with each

step navigable from others via the top left corner (Figure 3.1 and Figure 3.2). We finalized

this design based on pilot studies with four users.

3.2.4.1 Step 1: Review Raw Data

This step, also the landing page of DataPilot, enables users to analyze a dataset and select

a relevant subset (Figure 3.1). It consists of the following views:
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Inspect, Sort, Search and 
Select Attributes

Filter by 
Attribute Values

Filter by Quality 
Information

Navigate Data Records augmented with 
Quality and Usage Information Scents.

Get a visual overview 
of data distributions
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F

G

Filter by Usage 
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Figure 3.1: The DataPilot user interface showing Step 1 (Review Raw Data) of the three-
step workflow. Users can inspect the list of dataset attributes (A. Attribute View), inspect
quality and usage dimension scores for an attribute (B. Attribute Detail View), visual-
ize attribute distributions and navigate dataset records (C. Data View), incrementally filter
records by attribute values (D. Attribute Filter View), incrementally filter attributes and
records by both quality (E. Quality Filters View) and usage dimensions (F. Usage Filters
View) to reduce the search space, get a visual summary of this filtered dataset (G. Minimap
View), and explicitly select attributes (A. Attribute View) and records (automatically se-
lected based on filters) for the desired subset.

A Attribute View shows all attributes as a flattened list ( ) or as a nested list ( ),

the latter being helpful for hierarchical datasets. To efficiently display a large number of

attributes, we utilize the virtual scrolling principle preventing unnecessary rendering of

objects not visible in the viewport (DG6). A search field allows quick attribute lookup

via keyword-based queries. Users can also sort by quality and usage dimensions at the

attribute-level. Each list item shows the attribute’s name (e.g., “sales.product.name”), its

datatype (e.g., : Categorical, : Numerical), a bi-colored circular glyph (DG3), e.g.,

(combination of green , yellow , red colors), where the left-half shows the overall

quality score and the right-half shows the overall usage score. Note that when the uploaded

dataset has only either quality or usage information available, these bi-colored glyphs au-

tomatically transform into single-colored glyphs; users can also manually configure them
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Figure 3.2: DataPilot Step 2 (Review Selected Subset) and Step 3 (Create Dashboard).
Users review their selected attributes (H. Attribute View) and records (I. Data View),
assign attributes (J. Attribute View) to encodings (K. Encodings View), inspect the re-
sulting visualization (L. Visualization Canvas) and save it to the dashboard (M. Saved
Visualizations). Users can freely navigate between the three steps.

from the settings in the top-right corner (DG5). The high (≥90), medium (≥67 but

<90), low cutoffs (that determine the three categories) and the corresponding colors (to

accommodate color-related accessibility concerns), can be configured from the legend in

the top-right corner. Each checkbox allows users to select or deselect attributes in the

subset (DG4). Hovering on an attribute’s name shows its description in a tooltip. Clicking

the bi-colored glyph opens the Attribute Detail View.

B Attribute Detail View is an overlay showing details of the attribute quality and us-

age, like LinkedIn’s [174] profile completeness (DG3). Like the bi-colored glyph, the left
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column shows data quality dimensions and the right shows usage dimensions along with

the scores visualized on 5-point icon-array rating scales, e.g., “placecontext.geo.city”

has a 100% completeness score ( ) and an 87% overall usage score ( ).

Hovering the info icon shows the dimension’s definition (e.g., “Completeness is the

percentage (%) of non-missing values in the attribute”) and any preconfigured rules (e.g.,

“sales.purchases.price is considered correct if it is ≥ 0”) to educate the user (DG2).

C Data View shows the entire dataset in an interactive table. The first row shows

a summary view of attribute characteristics such as cardinality (number of unique val-

ues), missing values, and distribution plots (area charts for numerical , bar charts for

categorical attributes that show the underlying data distribution in black and the fil-

tered data distribution in blue) (DG3). Table cells that have missing or incorrect values

(e.g., “sales.purchases.price”=“NaN”) are highlighted in red with details shown on hover

(DG3). Standard operations such as search, pagination, and sorting are integrated within

the table controls. Users can also sort by quality and usage dimensions at the record level

(DG4). In Figure 3.1, the records are sorted by completeness (the “Sort Values” dropdown

in the Data View) and the columns are sorted by correctness (the “Sort” dropdown in the

Attribute View), both in the ascending order .

D Attribute Filter View enables users to filter the dataset by applying filters for each

attribute by dragging them (from the Attribute View or the Data View) into this view’s

drop-zone (DG4). Multi-select dropdowns for categorical and range-sliders for numeri-

cal attributes along with visual scents (embedded visualizations that provide information

scent cues for navigating information spaces [85]) for the distribution of attribute values in

the original dataset (in black) and after applying filters (in blue) help the user determine

appropriate filter criteria (DG3). Unlike selection of attributes, where one must explic-

itly check checkboxes to add to the subset, DataPilot automatically selects all remaining

records after filtering into the subset.

43



E Quality Filters View enables users to filter the dataset by quality dimensions at both

an attribute and a record level (DG4). For example, applying the attribute-level complete-

ness filter ∈ [60, 100] removes all data attributes (columns) that have a completeness score

outside the range. Similarly, a record-level completeness filter ∈ [50, 75.61] filters out all

records (rows) outside that range.

F Usage Filters View enables users to filter the dataset based on usage dimensions

(DG4), like the Quality Filters View. For example, applying the attribute-level in-subsets

usage filter ∈ [30, 100] removes all attributes that were selected by less than 30% of users.

G Minimap View provides a novel, visual overview of the proportion of attributes and

records originally in the dataset (gray), currently visible after applying filters (blue), and

selected in the dataset subset (green) (DG4). We disabled the green (selected) state by de-

fault as our pilot users found it to be overwhelming. The width and height of the rectangular

area encode the number of attributes and records, respectively. This view is discretized into

small rectangles proportional to the dataset size.

3.2.4.2 Step 2: Review Selected Subset

This review step consists of the H Attribute View and I Data View with just the

selected attributes and records (Figure 3.2). Viewing all selected attributes stacked together

enables users to inspect the relative distributions of high, medium, and low quality and

usage scores; this view also makes it easy to inspect the distribution of the red highlights

(missing or incorrect values) in the selected table cells; both of these tasks would be difficult

in Step 1 in the presence of deselected attributes. This step makes users pause and reflect

on their subset selection performance before moving onto building a dashboard (DG1).
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3.2.4.3 Step 3: Create Dashboard

After reviewing the selected subset, this step helps users create and save univariate and

bivariate visualizations, collectively forming a dashboard (Figure 3.2) (DG1). This step

consists of the following views:

J Attribute View is the same as the Attribute View in Step 2.

K Encodings View allows users to create visualizations by specifying a chart type (bar

chart, scatterplot, line chart), dragging attributes onto visual encodings (X, Y), and deter-

mining aggregations (sum, mean, max, min) wherever applicable (DG4).

L Visualization Canvas renders the visualization based on the specifications configured

in the Encodings View. Users can save a visualization by giving it a title.

M Saved Visualizations View shows the list of all visualizations saved from the Visu-

alization Canvas. This view also allows users to delete the saved visualizations (DG4).

3.2.5 Implementation

We developed the DataPilot frontend in Angular [175], which interfaces with a Python [176]

server in real-time over the HTTP REST [177] and websocket [178] protocols. The datasets,

user interaction logs (collected from the frontend), and auxiliary information were all stored

in PostgreSQL, and queried later using SQL (DG6).

3.2.6 Example Scenarios

To illustrate how DataPilot can help users prepare relevant subsets from large, unfamiliar

datasets, we developed two usage scenarios about two hypothetical users - Sunny (data

engineer) and Kiran (data analyst); these scenarios were developed in collaboration with

the domain experts to ensure domain relevance.
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Case 1: Expert User, Improved Performance. Sunny, an experienced data engineer,

often prepares data subsets for analysts who then prepare business reports. They open

DataPilot, upload a recent batch of customer transactions data for an e-commerce app,

and begin analysis. Given their domain expertise, they quickly lookup known attributes

via the search field and select five attributes for their subset: “sales.product.name” ,

“sales.purchase.price” (in USD), “placecontext.geo.countrycode” (e.g., ‘IN’ for In-

dia), “timestamp” (of purchase), and “environment.operatingsystem” (e.g., ‘iOS’).

They switch to Step 2: Review Selected Subset where they observe several cells in the

data table with a red background. In particular, the “placecontext.geo.countrycode” col-

umn is highlighting cells with the value “AA” ( ) and the “environment.operatingsystem”

column is highlighting cells with blank (missing) values ( ). Realizing no country has

“AA” as their code (as per DataPilot’s correctness constraint and from their own knowl-

edge) and that a majority (706 out of 1000) of values for operating system are missing,

they go back to Step 1: Review Raw Data to make amends.

They drag the “placecontext.geo.countrycode” attribute from the Attribute View

into the Filter Panel to remove all records with “AA” values ( ) and separately alert

the data collection team about this issue. To absolutely ensure that their data are correct

across all attributes, they apply a record-level “Correctness” filter ( ) to only keep

100% correct records. Finally, they deselect “environment.operatingsystem” from the

subset and instead select another attribute “environment.browserdetails.useragent” that

has similar information, e.g., ‘Mozilla/5.0 (iPhone; CPU OS 12 0 like Mac OS X; en US)’

and although it has not been used often before (right half is red), it is of high overall quality

(left half is green). In this way, DataPilot helped Sunny become aware of issues with their

data, guiding them to prepare a more complete and correct subset.

Case 2: New User, Effective Onboarding. Kiran recently joined a data analytics com-

pany and is tasked with becoming familiar with a client’s data for designing future dash-
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boards. They upload a client dataset of e-commerce transactions into DataPilot and start

analyzing. The dataset is large and unfamiliar. They start inspecting the attribute names and

descriptions from the Attribute View and the corresponding values and distribution plots

in the Data View ( ). Overwhelmed by the sheer size of the data and wanting to

speed up their onboarding, they modify their strategy to only target important attributes.

They try to reduce the attribute search space by applying attribute-level filters in the

Quality Filters View and Usage Filters View as proxies for importance. Specifically,

they inspect the distributions over the respective range sliders and filter out attributes with

an overall quality score < 75 ( ) and an overall usage score < 25 ( ), reducing

the number of attributes to a manageable 17. Finally, they sort these attributes by overall

quality score in the descending order ( ) and start inspecting their name,

description, and and scores in the Attribute Detail

View (via the bi-colored circular glyphs ). In this way, DataPilot helped Kiran get on-

boarded to a new, unfamiliar dataset quickly and effectively.

3.3 Evaluation: User Study Using DataPilot

We conducted a user study to investigate how the DataPilot user interface guides users

(nudging them one way or another) to navigate a large and unfamiliar tabular dataset, pre-

pare a relevant subset, and build a visualization dashboard.

Task: We designed a subset selection and visual analysis task for participants to:

Explore a dataset of online customer behavior on an e-commerce website, prepare an effective

subseta to determine meaningful drivers of $ (dollar) sales revenue for the company, and create a

dashboard of at least three visualizations to convey their findings.
aA data subset comprises attributes and records less than or equal to those in the original dataset.

Participants: We recruited 36 participants consisting of professionals and researchers

from industry and academia: students (23), business consultants (2), senior data ana-
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lysts (2), assistant professor, associate product manager, data science manager, post-

doctoral scholar, program manager, quality assurance engineer, scientist (clinical trials),

software developer, and UX designer. Participants were pursuing or had received bache-

lors (3), masters (14), or doctoral (19) degrees in computer science (21), human-centered

computing (4), human-computer interaction (2), business administration (3), pharmaceu-

tical sciences, economics, electronics engineering, systems engineering, data science, or

information studies. Demographically, they were in the 18-24 (13), 25-34 (19), 35-44 (3),

or preferred not to say (1) age groups (in years) and of female (16), male (19), other (0), or

preferred not to say (1) genders. They self-reported their experience performing any kind

of data analysis using visual analysis tools (e.g., Excel, Tableau) or programming as either

everyday or part of the job (10), often (13), occasionally (13), rarely (0), or never (0).

Dataset: To thoroughly evaluate all DataPilot capabilities and complete the task within

the study duration, we used a random sample of 1000 records and 42 attributes from an

open-source digital marketing dataset [179] and infused certain quality issues pertaining

to correctness and objectivity (by setting appropriate constraints). We marked quality and

usage (and overall) scores such that ≥90 is marked as high , ≥67 but <90 as medium

, and the rest as low . We fixed these thresholds to realize a reasonable distribution of

attributes and records across the three (high, medium, low) categories, so that participants

are neither demoralized (all scores are low) nor overconfident (all scores are high).

System Configurations as User Study Conditions: To achieve DG5, we designed Dat-

aPilot to support four configurations: (1) neither quality nor usage, (2) only quality, (3) only

usage, and (4) both quality and usage. Of these four configurations, we did not explicitly

evaluate the (3) only usage configuration because our expert interviews highlighted ad-

dressing data quality concerns as most important and that usage information alone must

never power “data-driven” analysis and decision-making, at least not without more impor-

tant aspects such as quality. Hence, we utilized the other three DataPilot configurations as
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standalone study conditions in a between-subjects evaluation, as described next.

[B] Baseline. With this configuration, we aim to understand user strategies without qual-

ity and usage information, also simulating what many current systems do (e.g., Tableau [180]).

Specifically, the bi-colored glyphs next to the attribute name, filter and sort options, and vi-

sual scents (in the table) for usage and quality are all hidden.

[Q] Quality. With this configuration, we aim to understand how users utilize only quality

information to perform the study task, also simulating what many current systems do (e.g.,

Profiler [133], Trifacta [181]). This condition would also enable us to compare against the

following D configuration (that has both quality and usage information). Specifically, only

single-colored circular glyphs next to the attribute name, sort and filter options, and visual

scents (in the data table) that are relevant to quality are visible and enabled.

[D] DataPilot. This all encompassing configuration shows both data quality and usage

information in the interface. Specifically, all features are enabled. Usage information for

the D condition were computed by processing the interaction logs of the participants in

the B and Q conditions (24 participants). We computed each attribute’s in-subsets score

as the percentage of participants who selected that attribute to be in their subsets, in-filters

score as the percentage of participants who filtered by that attribute, in-visualizations score

as the percentage of participants who assigned that attribute to a visual encoding, and an

overall score as the maximum of the three aforementioned scores. Similarly, for each

record, we computed the in-subsets score (also the overall score in this case) by computing

the percentage of participants who selected that record (automatically as a result of applied

filters) to be in their subsets. To disregard temporary, unplanned, and accidental selections

during analysis, we compute this information only based on the final state of the interface

at the end of the task (selected subset, applied filters, saved visualizations).
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Study Session. We assigned participants to one of the three study conditions (B, Q, D).

Each study session lasted between 60 and 90 minutes, with D taking longer than Q than

B due to differences in the training and practice times. We compensated each participant

with a $15 gift card for their time. We conducted the study remotely using Teams [182];

the experimenter provided participants access to the study interface by sharing their (exper-

imenter’s) computer screen and granting input control to the participant. After providing

consent, participants saw a video tutorial on DataPilot’s features (B:5, Q:7, D:10 min-

utes long). Participants then performed a practice task on a dataset of houses (adapted

from [183]) to get acquainted with the UI before starting the actual task.

The actual task lasted a maximum duration of 30 minutes. Participants were not re-

quired to think aloud during the task to simulate a realistic work setting (although some

participants felt comfortable doing so). During the task, participants’ interactions with the

system (e.g., the filters they applied, the data subsets they selected) were logged. The study

ended with participants completing a questionnaire to rate the usefulness of DataPilot’s

features and a semi-structured debriefing interview for 10 minutes in which participants

reflected on their overall experience, provided feedback, and answered other questions. At

the end of the debriefing interview, the experimenter also demonstrated the D configuration

to both B and Q participants to get their initial reactions and elicit feedback on how the new

set of aids would have hypothetically helped them accomplish their task differently. Each

debriefing interview was screen- and audio-recorded for subsequent qualitative analysis.

3.3.1 Hypotheses

We structure our study analysis according to the hypotheses below, predetermined before

the study based on our expectations from the intended purpose of the tool, former percep-

tion studies, feedback from pilot studies, and our own instincts. > implies more or greater

than; < implies less or smaller than.

50



H1 B (Baseline) > Q (Quality) > D (DataPilot) in terms of the number of attributes and

records in the selected subsets.

H2 B > Q > D in terms of the proportion of attributes and records with low quality and

usage in the selected subsets.

H3 B < Q < D in terms of the proportion of attributes and records with high quality and

usage in the selected subsets.

H4 B < Q < D in terms of success and confidence after the task.

H5 B < Q < D in terms of amount of effort, temporal demand, mental demand, and

frustration while doing the task.

H6 Participants will find quality information to have greater utility than usage informa-

tion while doing the task.
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Figure 3.3: (a) Number of attributes and records in the participants’ selected subsets and
(b) attribute-level and record-level distributions of high, medium, low overall scores for
both quality and usage across the three study conditions (Baseline, Quality, DataPilot).

3.3.2 Results

Below, we present findings from the user study and discuss them in the context of quali-

tative participant feedback. PC1,...,12, Q1,...,12, D1,...,12 refer to the 36 participants in the

Baseline (B), Quality (Q), and DataPilot (D) conditions, respectively. Participant quotes

51



spoken during the debriefing interview and responses written in the questionnaires were

both coded and categorized using affinity diagramming [184], an inductive thematic anal-

ysis [185] technique. One experimenter came up with an initial set of categories that were

then refined during iterations with three other experimenters until a consensus was reached;

the final codebook consisted of 6 high-level categories with 43 detailed, low-level codes.

3.3.2.1 Feedback on DataPilot’s Quality and Usage Information

DataPilot, the system. Overall, participants found DataPilot to be useful, reporting above

average system usability (SUS [186]) scores across the three conditions as {B: 80.21, Q:

74.17, D: 71.67}. D4 commented that “Providing detailed auxiliary information such as

the quality and usage of each data attribute is very important and missing in current tools

like Tableau and PowerBI.” Q8 also explained why quality and usage information are im-

portant noting, “80-90% of true data analysis, data science, machine learning is [the data

preparation] step. These [quality and usage] measurements that you’re creating to allow

users to start [working on their tasks] and make them explore some of the unintended con-

sequences is very powerful. It has ample opportunity for future discovery to continuously

make this a better product, so very very fascinating stuff.”

Quality information. Participants had overall positive feedback for the quality informa-

tion. Q10 commented that “There are invisible problems with your data and you don’t

necessarily find out until you start playing around with the visualizations. [Furthermore,]

in aggregate visualizations, you either have limited or no ability to identify quality prob-

lems so I appreciate that DataPilot is just very explicit about these quality issues.” Q7

noted that “It is important for systems to provide such out-of-the-box insights so that users

like me who don’t write code don’t completely ignore these aspects and can rely on the

green attributes and just get started with analysis.” Q8 saw “a lot of value to enable users

to more quickly filter [attributes and records] through the signal of these measurements of
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quality as opposed to learning [them] on their own.” However, Q8 also expressed caution

about “confounding factors, especially missing data, because many times data is not miss-

ing at random it is actually missing and telling a story,” suggesting quality information can

provide a good starting place, but additional analysis by users may still be required.

Usage information. There was mixed feedback regarding the usage information. Partic-

ipants with positive feedback suggested using usage information to perform fast and effi-

cient analysis (Q6), to seek validation “by performing little investigations” (Q1), “to check

if they have a similar opinion as others” (D4), “to identify new things where other people

are not looking” (D3), to seek guidance from predecessors (e.g., Q2,11), to avoid repeating

past mistakes (D3), and to choose between conflicting choices (e.g., “for some attributes

it’s not easy to decide...but usage can help choose” - D8). Participants with mixed and

negative feedback said they would not care (D3) or rely on what other people did as they

do not know anything about the other users and would have to assume they did a great job

with their analysis (Q1, D10). Participants also raised concerns around bias and following

the crowd as “one might miss out on an uncommon attribute that is also useful” (PC7).

3.3.2.2 Comparing Prepared Subsets

Table 3.1 and Figure 3.3 show the sizes of subsets (number of attributes out of 42 and

records out of 1000) selected by the participants (Figure 3.3a) and the distribution of high,

medium, low values of attribute- and record-level quality and usage scores (Figure 3.3b).

Validating H1, D chose the fewest attributes and records followed by Q followed by B.

Furthermore, D chose a higher percentage of high overall quality attributes than Q than

B. Because the dataset was sparse (a majority of values in each record were empty), no

record had a high overall quality score, hence the corresponding µR, σR values for B, Q,

D were all 0. D also chose a higher percentage of high overall usage attributes and records

than Q than B. These results validate H3.
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Table 3.1: Statistics associated with the prepared dataset subsets in terms of their “Size”
and distribution of high (“% H”), medium (“% M”), low (“% L”) values for attribute- (“A”)
and record-level (“R”) quality and usage scores across the three study conditions (B, Q, D).
The bolded and highlighted values in each row support our hypothesis, specifically H1, H2,
H3, e.g., 6.5 (D) has the smallest µ of number (“Size”) of attributes (“A”) selected in the
subset, supporting H1. No record (“R”) had a high (“% H”) overall quality score because
the chosen dataset was sparse. Medium (“% M”) values were not part of our hypotheses;
thus, the table cells corresponding to these values are neither highlighted nor formatted.

Baseline (B) Quality (Q) DataPilot (D)
µ σ µ σ µ σ

Size of Prepared (Selected Subsets)

Size
A 9.17 2.44 7.92 2.19 6.5 2.32
R 866.17 253.08 710.83 282.85 642.17 249.18

Distribution of Overall Quality Scores

% H
A 60.45 16.63 74.47 18 77.32 17.73
R 0 0 0 0 0 0

% M
A 29.90 20.43 22.22 13.94 20.83 16.36
R 42.36 4.12 54.78 17.09 57.45 18.7

% L
A 9.65 10.32 3.31 8.36 1.85 6.42
R 57.64 4.12 45.22 17.09 42.55 18.70

Distribution of Overall Usage Scores

% H
A 11.67 33.20 13.72 4.54 15.45 8.27
R 29.03 8.14 38.16 16.89 38.78 12.97

% M
A 15.29 9.53 11.18 9.81 16.46 12.95
R 55.54 3.90 54.11 13.16 54.82 8.59

% L
A 73.04 11.37 75.09 7.87 68.08 16.45
R 57.64 4.12 45.22 17.09 42.55 18.70

Similarly, D chose a lower percentage of low overall quality attributes and records

than Q than B. Furthermore, D chose a lower percentage of low overall usage attributes

and records than Q and B, validating H2. These findings suggest that quality and usage

information nudged users to prepare smaller, more effective subsets.

3.3.2.3 Task Fidelity Scores

Figure 3.4 shows participant feedback on the fidelity of the task on a seven-point Dis-

agree (1) to Agree (7) scale. D reported higher or comparable mental demand (MD=5;

MQ=5; MB=4.5; M=median), hard work (MD=5; MQ=4; MB=4), and frustration (MD=2.5;

MQ=2.5; MB=2) than Q than B, finding some evidence in support of H5. We attribute this
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Figure 3.4: Task fidelity scores as reported by participants on a seven-point Disagree (1) to
Agree (7) scale. D participants reported higher or comparable mental demand, hard work,
and frustration but greater success and confidence at the end of the task than Q than B.

result to the increased complexity due to additional user interface elements in D, that may

have affected users’ cognitive load. However, D reported greater success (MD=6; MQ=5.5;

MB=5) and confidence (MD=5.5; MQ=5; MB=4.5) in the end, validating H4 and suggest-

ing that the auxiliary information helped participants perform the task more effectively.

3.3.2.4 Importance of General, Quality, and Usage Information

We asked participants about the importance of different kinds of general, quality, and usage

information in the interface on a Not at all important (1) to Very important (7) scale. Except

attribute datatypes, other general information such as attribute names, values, distributions,

cardinalities, and descriptions were mostly useful (Figure 3.5a).
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Figure 3.5b, Figure 3.5c show that overall, both Q and D participants found data qual-

ity to be useful (MD=5; MQ=5; M=median). At the attribute-level, completeness (MD=6;

MQ=6) was more important than correctness (MD=5; MQ=6) and overall (MD=5; MQ=5),

while objectivity (MD=3.5; MQ=4.5) received mixed scores. Many participants felt com-

pleteness was the most important (Q5, D3,6,9,10) because “[they were] not the one who set

the rules for correctness and objectivity” (D6). Scores were mixed for the record-level

dimensions: overall (MD=4; MQ=4), correctness (MD=4; MQ=3.5), and completeness

(MD=4; MQ=4). Q4 aimed for an authentic subset with mostly complete records, while

Q7 felt it counterproductive after applying attribute-level filters. B participants, when pre-

sented with quality information during the debriefing, stated that they either assumed there

were no missing values (PC2,10), forgot to look for them and vowed to be more alert next

time (PC9), or thought of but ignored them (PC4,7).

Figure 3.5b, Figure 3.5d show that overall, D participants had mixed feedback about

the usage information (MD=5; M=median). D2,7,8 found them useful, D1 not so much, and

D3,4,5,10 raised concerns about bias and loss of originality, suggesting usage be provided

with care in specific situations. At the attribute-level, overall (MD=5) was more important

than in-subsets (MD=4), in-visualizations (MD=3.5), and in-filters (MD=3). Most partici-

pants also stated overall to be the most important dimension except D6 who “went for the

highest [usage] in filters.” Participants found the record-level dimensions less useful (in-

subsets: MD=3). Q and B participants, when they were presented simulated usage informa-

tion during the debriefing interview reflected that usage can “give [them] more confidence

in selecting attributes” (Q4), help verify their work (Q1), and be guided by others’ work

(PC8, Q2). Overall, participants found quality to be more important than usage, as noted

by D4, “Data quality is way more important in our daily life and only if there are several

people working on the same dataset or tool, then data usage may be helpful” and Q12, “If

an attribute is of high quality but low usage, I would still pick that attribute.” Collectively,

these results validate H6.
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Importance: Quality vs. Usage

Trustworthiness: Quality vs. Usage

b

e

-

-

-

Importance: General Information Importance: Quality, Attribute [A] vs. Record [R] Importance: Usage, Attribute vs. Record a c

-

d

Figure 3.5: Importance and trustworthiness scores of general, quality and usage informa-
tion for attributes and records across the three study conditions. There are no box plots for
some study conditions, e.g., Baseline (B) in (b)-(e), as they were not applicable.

3.3.2.5 Participant strategies to select subsets.

Only quality. Ten Q and two D participants relied only on quality: Q4 discarded in-

complete records by applying a completeness filter, D1,5 filtered out attributes based on

completeness, and Q3 looked for high overall quality attributes via the colored glyphs.

Only usage. No D participant relied only on usage, vindicating our domain experts’ judg-

ment that quality is still the most critical information during data preparation and analysis.

Both quality and usage. Seven out of twelve D participants used both quality and usage.

For example, D9 applied quality filters and then focused on the bi-colored glyphs to avoid

the low usage attributes. D8 sorted attributes by overall usage scores before applying

quality filters, D11 inspected the in-subsets usage dimension after applying quality filters,

and D4,6 used quality to make initial selections and then usage to verify and validate.
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Neither quality nor usage. All B (as they did not see any auxiliary information), two Q

(Q1,2), and three D participants (D2,3,10) primarily relied on general attribute information

(e.g., attribute names and descriptions) and correlation and trend analysis (e.g., by creating

visualizations) to select their subsets.

Other non data-driven strategies. Participants also relied on their preconceptions (Q3,

D4), common sense (D1), intuition (D2,3,5,7), and trial and error practices (D3,6) as sec-

ondary strategies, highlighting the role of human-intelligence in data-driven analysis. Mod-

eling auxiliary information such as quality, usage can minimize uncertainties and inconsis-

tencies associated with such strategies.

3.4 Limitations and Future Work

DataPilot. DataPilot currently supports quality information for tabular datasets; future

work may explore other structured (e.g., relational databases) and unstructured (e.g., text,

documents) datasets. Additionally, there are other data-dependent (e.g., consistent repre-

sentation, ease of manipulation, and timeliness [160]) and process-dependent (e.g., data

collection [187]) aspects of quality, and similarly, other aspects of usage beyond a subset

selection and dashboard building task (e.g., co-usage frequencies of multiple attributes in a

visualization, frequency of visualization interactions such as zooming and panning [125])

that may be operationalized in the future. Next, DataPilot’s dashboard view currently sup-

ports creation of disconnected visualizations; future work may explore the effects of inter-

active affordances such as brushing and linking. Lastly, the completeness, correctness, and

objectivity quality constraints are currently hard-coded in the DataPilot source code in a

SQL-like syntax. Future work can provide interactive affordances for the user to configure

these constraints and also clean the data (e.g., handle missing values) directly via the UI.

User Study. During the user study, we made a fair assumption that our participants were

unfamiliar with the dataset and hence exhibited similar expertise, supporting internal va-
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lidity; however, this assumption may not hold true for real-world cases from an external

validity standpoint [188]. Future work may incorporate weighting mechanisms to more ac-

curately approximate usage based on recency of use (e.g., give more importance to recent

data), user expertise (favor experts), or the criticality of the application that utilized the data.

Next, because our participants were not domain experts, we did not have experts assess the

selected subsets or final dashboards; future user studies with domain experts should further

evaluate the quality of these results. Lastly, we focused on the particular task of exporting

visualizations for a dashboard, which may have impacted how the attributes and records

were chosen; future work should consider developing additional tools to study downstream

analytics tasks other than subset selection such as ranking and clustering.

3.5 DataCockpit

Extending DataPilot’s functionalities, we also built DataCockpit, a Python toolkit that uti-

lizes quality and usage information to help users navigate and monitor data lake comprising

multiple relational datasets and a logging framework.

Like DataPilot, DataCockpit computes quality and usage characteristics for each col-

umn (e.g., number of times the column was queried for subsequent use in downstream

applications) and row (e.g., number of non-missing values, valid values) and assigns scores

out of 100, that are then aggregated to a dataset-level. DataCockpit provides a customizable

and extensible Python API to compute, persist, and query usage metrics such as who used

which dataset, how, when, and why; and quality metrics namely completeness, correct-

ness, objectivity [4, 160]. Using DataCockpit, we developed a visual monitoring tool that

presents usage and quality information with interactive affordances for data lake navigation

and monitoring. Figure 3.6 shows the user interface, and it consists of two main tabs.

Data Lake View. This view is the landing page and provides an overview of a single data

lake (e.g., “Asia/Pacific”) configurable via the dropdown. It includes an interactive table
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Figure 3.6: DataCockpit’s Visual Monitoring Tool: the Data Lake View lists all datasets
in the data lake; the Dataset View provides additional information (e.g., a preview) about a
specific dataset (a), overall quality and usage scores (b), temporal evolution of these scores
(c), and a visualization showing attribute and record-level quality and usage scores (d).

with information on constituent datasets, e.g., {“Id”, “Name”}. The last two columns cor-

respond to overall “Quality” and “Usage” scores, heuristically classified as high ○ (≥90),

medium ○ (≥67 but <90), and low ○, using the same cutoffs as DataPilot [4]1. Users can

utilize this information along with search, filter, and pagination interaction affordances to

(1) navigate: strategically explore the datasets in the data lake based on their quality and/or

usage (not by their name and/or create/update timestamps), (2) discover: find high qual-

ity, high usage, relevant datasets for a downstream application, (3) monitor the ‘health’

of the data lake, and (4) housekeep: find low quality, low usage irrelevant datasets for

1Shown quality and usage information is simulated for this demonstration.
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archival. Clicking a table row presents additional details about the corresponding dataset

in the Dataset View.

Dataset View.

a Overview and Preview Views present factual information for the selected dataset,

like the Data Lake View, along with five sample records (as a preview).

b Quality and Usage Views visualize the computed quality and usage scores as col-

ored glyphs: high ○ (≥90), medium ○ (≥67 but <90), and low ○. For example,

Figure 3.6 shows that the “Duma” dataset has a correctness of 100% ○ and has been

used more to generate reports (70) ○ and less to build dashboards (65) ○.

c Evolution over Time View visualizes the evolution of overall usage and quality

scores for this dataset over time. These scores are (re)computed whenever new

records (a new batch of data) are appended to the dataset (even when new datasets

are ingested), and/or on a scheduled (e.g., weekly) basis, helping users monitor the

health of datasets.

d Attribute and Record Explorer View presents quality and usage information for

each attribute in an interactive list or tree visualization (Figure 3.6), and record as a

tabular visualization. The tree visualization is useful for hierarchical data schemas

(e.g., “placeContext.geo.city”, “placeContext.geo.point.latitude”) and lets users pan,

zoom, expand, and collapse attribute nodes to promote overview first and details

on demand visual exploration [189]. Nodes can be colored based on the quality

or usage scores of the corresponding attributes. Node label colors correspond to

whether an attribute in the mapped schema is in the dataset (black) or not (gray).

Hovering an attribute node (e.g., “city” in Figure 3.6) shows corresponding quality

and usage scores in a tooltip. For record-level information, a datatable provides

similar capabilities.
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3.6 Summary

In this chapter, I described two guidance systems that use data quality and usage informa-

tion to improve data preparation workflows: (1) DataPilot for selecting an effective subset

from a large, unfamiliar tabular dataset and (2) DataCockpit for data navigation, discov-

ery, and monitoring within data lakes. DataPilot is a visual data preparation and analysis

tool that models two kinds of auxiliary information, quality and usage, to assist users in

analyzing a large and unfamiliar tabular dataset, selecting a relevant subset, and building a

visualization dashboard. DataPilot is an outcome of a design study with 14 data workers

over a period of two months who communicated the importance of data quality and also

suggested surfacing data usage characteristics to guide users during data preparation. A

user study with 36 participants suggested that quality and usage information together help

users select smaller, effective data subsets with greater success and confidence; however,

to balance exploration versus exploitation, our participants sounded caution about users

relying excessively on usage information. DataCockpit is an open-source Python library

that similarly models quality and usage information for data lakes (relational databases

with logging enabled). Through DataCockpit we enable developers to build custom data

navigation, discovery, and monitoring tools because we believe that through quality and

usage information, organizations can build collective intelligence, increasing transparency

and accuracy to foster closer collaboration and cooperation among teams. DataCockpit and

the tool are released as open-source software at https://github.com/datacockpit-org. For

details, I refer the reader to associated publications [4, 5] and patents [16, 17, 18].
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CHAPTER 4

GUIDANCE FOR DEBUGGING QUESTION-ANSWERING WORKFLOWS

In the previous chapter, I described a system (DataPilot) that presented static, precomputed

insights about data quality and usage to enhance subset selection workflows; essentially,

this system offered visual cues and interactive affordances as guidance, for users to select

relevant subsets from large, unfamiliar datasets. In this chapter, I describe a question-

answering chatbot system, integrated with an interactive, self-service debugging view, that

helps users interactively debug (i.e., inspect for, isolate, and fix errors in) natural lan-

guage to SQL (NL2SQL) scenarios, partly achieving RG1: Investigate the role of guidance

in enhancing analytic processes and outcomes in various data preparation and analysis

workflows. Unlike DataPilot, this system offers a test-bed for users to interactively guide

themselves by exploring what-if scenarios to dynamically debug NL2SQL responses. This

chapter is based on work published at ACM IUI 2021 [26] and patented by Microsoft [15].

4.1 Motivation and Background

Current advances in machine learning make it possible for many systems to let their users

express and fulfill their goals through natural language (NL) in what are known as nat-

ural language interfaces (NLIs). A particular family of these systems, NLIs for querying

databases, have been studied by researchers in natural language processing [190, 191, 192],

databases [193, 194, 195, 196, 197, 198, 199, 200], and human-computer interaction [201,

202, 203, 204, 205, 206, 207, 208]. Systems employing these NLIs receive a natural lan-

guage (NL) question as input, translate it into a formal database query and execute the query

on the underlying database to compute an answer. Existing systems present these responses

using a combination of the computed answer, the generated query, any associated meta-data

(e.g., mappings between the question and the generated query), easy-to-understand expla-

63



nations of the aforementioned artifacts (using, for example, NL and visualizations), and UI

control augmentations (e.g., drop-downs) that facilitate fixing errors and disambiguation.

continents
Cont-

Id
Conti-

nent
1 america
2 europe
3 asia
4 africa
5 australia
… …

countries
Country-

Id
Country-

Name
Conti-

nent
1 usa 1
2 germany 2
3 france 2
4 italy 2
5 japan 3
… … …

car_makers
Id Maker Country-

Id
1 Citroen 3
2 Ford 1
3 Daimler 2
4 BMW 2
5 Chrysler 1
… ... …

model_list
Id Model Maker-

Id
1 citroen 1
2 plymouth 5
3 mercury 2
4 mercedes 3
5 bmw 4
… … …

car_names
Id Make Model-

Id
1 ds pallas 1
2 satellite 2
3 duster 2
4 zephyr 3
5 benz 300 4
… … …

cars_data
Id Horse-

power
Weight Edispl Accel-

erate
Year

1 115 3090 133 17.50 1970
2 150 3436 318 11 1970
3 95 2833 198 15.5 1973
4 85 3070 200 16.70 1978
5 77 3530 183 20.10 1979
… … … … …

(a) The cars database (production database); → depicts the Foreign Key - Primary Key relation-
ships; [. . . ] imply more rows.

SELECT c a r m a k e r s . Maker FROM c a r m a k e r s
JOIN c o u n t r i e s

ON c o u n t r i e s . C o u n t r y I d = c a r m a k e r s .
C o u n t r y I d

WHERE c o u n t r i e s . CountryName= ’ usa ’ ;

(b) Generated SQL query for the “Which car makers are
American?” question

car_makers
Maker

Ford
Chrysler

(c) Answer on production database

Figure 4.1: An example natural language (NL) to SQL (NL2SQL) scenario.

These systems present challenges for users who may be familiar with the domain but

are not fluent in the database query language. In particular, assessing the correctness of

an answer that is output from an NLI can be challenging. For example, in a system that

answers questions about a cars database (Figure 4.1a), a user asks a question “Which car

makers are American?” The system first translates it into a SQL query (Figure 4.1b), and

then runs it on the database to compute the answer—Ford, Chrysler (Figure 4.1c). An

expert on cars might suspect the answer to be correct based on their knowledge, but it

might not be so. In this case, the question contains “American,” which is syntactically

similar to “america” of the continents . Continent column and semantically similar to “usa”

of the countries .CountryName column. Just by looking at the computed answer, it is hard for

users to tell if this NL ambiguity was successfully resolved. Showing the generated SQL

query can clarify these issues, but this only helps those who understand the query language.

Prior work has studied ways to explain such question-answering workflows using NL [209,

210, 211, 212, 213] and visualizations [214, 215, 216, 217], including ways to communi-
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cate and resolve ambiguities using multimodal interactive widgets [202, 204, 206, 207,

198]. For example, in terms of NL, NaLIR [198] reveals these issues by mapping enti-

ties from the input query to the entities in the database schema and presenting them to the

user using NL and dropdowns. Su et al.’s [218] system converts a Seq2Sql model API

output into NL, augmented with GUI widgets that support error-fixing and disambiguation

using fine-grained user interaction. DataTone [207] leverages mixed-initiative interaction

through dropdown menus called “Ambiguity Widgets” to resolve ambiguities in the input

query. In terms of visualizations, QUEST [216] connects matching entities from a query’s

input to a database structure. QueryVis [214] automatically generates diagrams of SQL

queries that capture their logical intent. Berant et al.’s [215] cell-based provenance model

explains the execution of a SQL query using provenance-based highlights on tabular visu-

alizations (e.g., highlighting relevant cells that match a WHERE condition).

We followed a different approach, using the data itself to explain the query and the

execution process. Additionally, we provision an interactive, self-service debugging view

for users to guide themselves through the system’s execution process, as described next.

4.2 DIY: Debug-It-Yourself

We developed Debug-It-Yourself (DIY; Figure 4.2 and Figure 4.4), an interactive, self-

service debugging tool that enables users without specialized knowledge of a query lan-

guage (e.g., SQL) to assess the responses of a state-of-the-art NL2SQL system for cor-

rectness. Specifically, DIY lets users inspect for, isolate, and if possible, fix errors in the

system’s output; essentially, guide themselves through the system’s execution process. DIY

presents users with a sandbox where they interact with (i) a small-but-relevant subset of the

underlying production database, which we refer to as the sample testing database; (ii) map-

pings between the entities in the question and the generated query; and, (iii) multimodal

explanations of the execution of the generated query on the sample testing database. DIY’s

intended users include domain experts with limited databases experience and information
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Figure 4.2: The DIY (Debug-It-Yourself) technique implemented in a QA (Question-
Answering) shell. (A) Query input, (B) Annotated Question View shows the question with
important tokens highlighted, (C) Answer on Production Database View shows the query
result on the production database (DB), and (D) Debug View. (i) Detect Entities View
shows the mappings between the question and the query, (ii) Sample Data View shows a
small-but-relevant subset (sample testing DB) of the production DB, (iii) Explainer View
provides step-by-step explanations of the query, and (iv) Answer on Sample Data View
shows the query result on the sample testing DB.

workers who are not familiar with writing complex database queries.

For example, Figure 4.3 shows DIY applied to our earlier scenario (Figure 4.1). DIY

first identifies relevant tables and columns from the query and samples a few relevant

records from the underlying production database (Figure 4.3a). The query is then bro-

ken into three subqueries that are sequentially executed on the sample testing database.

Each subquery explains one or more SQL clauses: FROM, JOIN (Figure 4.3b), WHERE (Fig-

ure 4.3c), and SELECT (Figure 4.3d), respectively using NL and tabular visualizations. Fig-

ure 4.3d is also the final answer when the query is executed on the sample testing database.

The sample data and sandbox environment allow users to employ different back-of-

the-envelope calculation debugging strategies to assess the correctness of the query. For

example, users can experiment by modifying the sample testing database (e.g., edit a cell’s

value) that updates the subsequent steps including the answer. Experimenting with the
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countries
Country-

Id
Country-
Name

1 usa
2 germany
3 france

car_makers
Maker Country-

Id
Citroen 3
Ford 1
Daimler 2

Consider the following sample data.

(a) Sample testing database.

countries
Country-

Id
Country-
Name

1 usa
2 germany
3 france

car_makers
Maker Country-

Id
Ford 1
Daimler 2
Citroen 3

For each record in countries, choose each 
corresponding record in car_makers
where countries.CountryId equals 
car_makers.CountryId.

(b) Explain FROM, JOIN

countries
Country-

Id
Country-
Name

1 usa
2 germany
3 france

car_makers
Maker Country-

Id
Ford 1
Daimler 2
Citroen 3

Keep those records whose 
countries.CountryName is equal 
to usa.

(c) Explain WHERE

car_makers
Maker

Ford

Choose 
car_makers.
Maker.

(d) SE-
LECT

Figure 4.3: A query explained using the DIY technique.

sample testing database can build trust in the system’s interpretation of the original ques-

tion and its output on the production database. If a problem is detected, DIY also presents

users with the means to fix errors and resolve ambiguities by allowing them to adjust the

mappings between the question and the generated query. The adjusted query is automati-

cally applied to the sample testing database and can eventually be applied to the production

database. In this way, DIY guides the user to debug NL2SQL scenarios.

4.2.1 Design Goals

DIY’s design was driven by three goals, based on prior work on NLIs for visualization [207,

202] and databases [198, 215], and our hypotheses for enhancing user experience.

DG1. Explain system responses. DIY aims to clarify system responses for users without

SQL knowledge, using natural language and visual explanations of queries.

DG2. Support error isolation. DIY aims to enable users to identify errors arising from

incorrect or incomplete NL references, by showing mappings between the entities in

the question and the generated query to the user.

DG3. Facilitate error correction. Upon discovery, DIY aims to let users directly cor-

rect errors and ambiguities through user interface (UI) controls, promoting human-

machine collaboration without paraphrasing on the human’s part.
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Explanation2

SQL1
SQL2
:
:

SQLN

NL question

NL2SQL 
Model

DIY technique in a QA Shell

Answer on 
Production DB

Answer on Sample Testing DB

Sample
Testing DB

Production DB

Formal Database (DB) 
Query (SQL)

Mappings between 
NL question & DB :

Explanation1

ExplanationN

Z

Z

Figure 4.4: Overview of the DIY technique in a QA shell.

4.2.2 User Interface

With the above design goals in mind, we designed DIY and embedded it into a QA shell

(Figure 4.2), with the following key components:

4.2.2.1 Generating the Sample Data

DIY’s key element and contribution is the use of a sample testing database to provide a

sandbox for simplified inspection, testing and debugging. To generate the sample testing

database, we clone the production database schema and show only those tables and columns

that are part of the generated query. We then apply one of the following two strategies to

populate each sample table with five records1.

Smart Constraints. To generate a small-but-relevant sample database, the system first

lists all entities and expressions specified in the query. Based on these, it identifies smart

constraints that the data sampling algorithm must satisfy. For example, consider the SQL

query: SELECT Id FROM cars data WHERE Horsepower>200 . In this query, the filter expres-

sion WHERE Horsepower>200 leads to a constraint requiring that at least one of the sample

1We chose five based on feedback from pilot studies and UI design considerations with respect to visual
clutter; currently this limit and sampling criteria are pre-configured.
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rows has Horsepower>200 so that the final result set is non-empty. We also add a sec-

ond constraint requiring that at least one row has Horsepower≤200. This ensures that

both sides of the boundary condition are represented so that, when the relevant subqueries

are executed on the sample testing database, the subanswers create before-after scenar-

ios that help to visualize the effects of specific operations. Table 4.1 catalogs the sample

constraints that we considered and implemented for various SQL constructs. We imple-

mented those constraints that had primitive entities, for example, a simple WHERE clause,

WHERE Horsepower>200 comprises {“Horsepower”, ‘>’, 200}. On the other hand, both

a subquery (e.g., WHERE Horsepower > (SELECT AVG(Horsepower)) ) and a HAVING construct

(e.g., HAVING AVG(Price)>2000 ) require an additional computation step using a SQL en-

gine. We did not implement these types of constraints.

Table 4.1: Smart Constraints: A catalog of constraints to generate a sample testing
database that can effectively explain the execution of the SQL query. IEU∗ = INTERSECT,
EXCEPT, UNION SQL keywords. Status = Status of Implementation.

SQL Entity Constraint Operation Status

SELECT Choose all columns mentioned in the SELECT clause. ✓
FROM Choose all tables mentioned in the FROM clause. ✓

JOIN Choose records from each to-be-joined table such that the joined state has at least
one record.

✓

GROUP BY Choose records such that the grouped-by columns have duplicate values. ✓
HAVING Choose records such that the grouped-by state satisfies the HAVING expression(s). ×

WHERE Choose records such that at least one satisfies the WHERE condition, and
at least one fails.

✓

DISTINCT Choose records such that the grouped-by column has duplicate values. ✓

LIMIT Choose records such that the result set has enough records to apply the LIMIT
operation.

✓

IEU∗ Choose records such that the execution of the subqueries have intersecting
subanswers.

×

Subquery Choose records such that the execution of this subquery produces a non-empty final
result set in the query.

×

Functions Aggregation functions (COUNT, SUM) ×
Operators Wildcards (*, %), LIKE ×

Human-in-the-loop. For any generated query, it is not always possible to satisfy all smart

constraints. This can be due to: (i) Practicality: Records that satisfy all constraints may not

be common, and the database may not be structured to support efficient sampling of certain
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constraint combinations. In such cases, collecting five records may require a linear scan of

the entire production database, and this may be too computationally costly to be practical

in an interactive setting; (ii) Feasibility: satisfying certain constraints may be impossible.

For example, the positive constraint for the question “How many car makers have their

headquarters on Mars?” will be car makers.Headquarter=“Mars” which cannot be sat-

isfied. In such scenarios, the system generates partially-relevant sample data. Users can

then optionally modify the tables in the sample testing database to add records or to modify

existing records to make them more relevant.

4.2.2.2 Generating Multimodal Explanations

To break the SQL query into subqueries, we consider the order of execution of different

SQL clauses. Each step generates a virtual table that is used as the input to the following

step. If a certain clause is not specified in a query, the corresponding step is skipped.

DIY considers only the forms of SQL queries output from the underlying NL2SQL model

(Listing 4.1). This is a subset of valid SQL queries, excluding clauses like TOP and WITH.

Logical Order of Execution of a SQL query. As shown in Listing 4.1, the FROM clause

and the subsequent JOINs are executed first to determine the working set of data. Next,

the WHERE constraints are applied to the individual rows, discarding the rows that do not

satisfy the constraints. The remaining rows are then grouped based on common values as

specified in the GROUP BY clause.

If the query has a HAVING clause, it is then applied to the grouped rows – the groups

that do not satisfy the constraints are discarded. Next, the expressions in the SELECT clause

are computed. This may include columns, or aggregation of functions, or subqueries. If a

DISTINCT keyword is present, duplicate records are discarded. Likewise, if an ORDER BY

clause is present, the rows are sorted accordingly. Finally, the rows that fall outside the

range specified by LIMIT and OFFSET clauses are discarded, leaving the final result set.
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(6) SELECT (7)
DISTINCT select list

(1) FROM left table
(2) join type JOIN

right table
ON join condition

(3) WHERE
where condition

(4) GROUP
BY group by list

(5) HAVING
having condition

(8) ORDER
BY order by list

(9) LIMIT count (10)
OFFSET count

(12) left SQL IEU∗

right SQL
(11) right SQL ;

4.1: General form of a
SQL query, with step numbers
assigned according to the order
in which each clause is
logically processed. left SQL
& right SQL represent SQL
queries with Steps 1-10. IEU∗

stands for INTERSECT,
EXCEPT, UNION.

(I) left SQL
(a) SELECT * FROM JOIN ;
(b) SELECT * FROM JOIN WHERE ;
(c) SELECT * FROM JOIN WHERE GROUP BY ;
(d) SELECT * FROM JOIN WHERE GROUP

BY HAVING ;
(e) SELECT select list FROM JOIN WHERE

GROUP BY HAVING ;
(f) SELECT DISTINCT select list FROM JOIN

WHERE GROUP BY HAVING ;
(g) SELECT DISTINCT select list FROM JOIN

WHERE GROUP BY HAVING ORDER BY ;
(h) SELECT DISTINCT select list FROM JOIN

WHERE GROUP BY HAVING ORDER
BY LIMIT OFFSET ;

(II) right SQL
(III) left SQL IEU∗ right SQL ;

4.2: Sequence of subqueries generated by DIY at each
step of the Explainer View for a general SQL query
represented in Listing 4.1. The underlined text shows
the difference with the previous subquery.

Natural Language (NL) Explanations. Prior work has explored methods to translate

SQL queries to natural language (SQL2NL). In the context of an NL2SQL system, this can

be used to allow the “DMBS to talk back in the same language” as the users, allowing users

to verify if their question was interpreted correctly [213]. Several SQL2NL strategies have

been explored: Kokkalis et al. [211] and Elgohary et al. [209] employ a template-based

approach while Su et al. [210] employ a grammar based approach.

We follow a heuristics-based approach to generate NL explanations for each step in the

Explainer View. One notable aspect of these explanations is that they explain the difference

between the current and the previous subquery. For example, consider two consecutive sub-
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queries: (i) SELECT * FROM cars data and (ii) SELECT * FROM cars data WHERE Horsepower>200 .

The generated NL explanation for subquery (i) is “Choose all columns from the cars data

table.” and for subquery (ii) is, “Keep those records whose Horsepower is more than 200.”

We hypothesize that this approach can help users to not only understand each step but

also enable them to detect and isolate specific errors. Table 4.2 shows the complete list of

templates that are currently being used to explain each subquery.

Table 4.2: Natural Language (NL) Explanation templates for different SQL clauses.
Each template scales to multiple instances (e.g., two WHERE clauses) using punctuations
(e.g., ‘,’) and conjunctions (e.g., ‘and’).

SQL keyword Natural Language Template

FROM Choose columns from the {table} table.

FROM + JOIN
For each record in {table1}, choose each corresponding record in {table2}
where {column1} {operator} {column2}.

WHERE Keep those records whose {column} {operator} {value}.
GROUP BY Group records with the same {column} together.
HAVING Keep those groups where {aggregation} of {records/column} {operator} {value}.
SELECT Choose the {column}.
DISTINCT Keep unique records.
ORDER BY Sort the records by {column} in the {orderType} order
LIMIT Choose the first {N} record(s).
INTERSECT Choose all records that are common to the answers of Step {M} and Step {N}.

EXCEPT
Choose all records from the answer of Step {M} that are not in the answer of
Step {N}.

UNION Combine all records from the answer of Step {M} and the answer of Step {N}.

Tabular Visualizations. An interactive datatable complements each NL explanation dis-

playing the result after the corresponding subquery is executed on the sample testing

database. Table headers communicate the table names and column names of data values .

Each table is treated as the input to the following step. For example, observe steps 2, 3, and

4 in Figure 4.6. Step (2), explains the WHERE clause, and the rows that do not satisfy the

corresponding constraints are faded out and struck-through. Similarly, Step (3), explains

the GROUP BY clause, and the grouped records are accordingly visualized.
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4.2.3 Implementation

Semantic parsing of NL to SQL has recently surged in popularity thanks to the creation of

dataset benchmarks such as WikiSQL [196], Spider [219], SParC [220], and CoSQL [221].

These dataset and associated benchmarks have led to the development of many deep learn-

ing models that address semantic parsing [222, 223, 224, 225, 226, 227]. Among these,

RAT-SQL [225] uses relation-aware self-attestation and encodes the names of columns

and tables, as well as the values of data, into a common dense representation. RAT-SQL

achieved state-of-the-art performance on the Spider dataset in early 2020; hence we used

it as DIY’s underlying NL2SQL engine. We implemented DIY as a ReactJS [228] web

application, making API requests to a deployed instance of RAT-SQL over HTTP REST.

We utilized SQL.js [229] to manage the sample database directly in the user’s browser.

4.2.4 Example Scenarios

In the following two scenarios, we illustrate how DIY can help users assess the generated

queries and answers for correctness and detect & fix errors.

Clicking Apply updates the 
Answer on Production database

All superlatives are 
applied to Horsepower.

Sort by 
Horsepower to 
verify the MIN 

operation.

Fix the incorrect mappings.

Figure 4.5: Scenario 1: DIY being used to correct a misclassified NL2SQL scenario.

73



Scenario 1: Fixing the Mapping. Chris, an automotive enthusiast without much knowl-

edge on SQL, loads a database on cars (Figure 4.1a) and asks “What is the mean acceler-

ation, minimum horsepower, and maximum displacement among all cars?” (Figure 4.5).

Upon reviewing the system’s response, Chris notices that even though the system cor-

rectly identified the three superlatives (mean, minimum, maximum) and attribute keywords

(acceleration, horsepower, displacement), it applied all superlative operators only to the

Horsepower attribute. Convinced that the result is not correct, Chris expands the Debug

View to repair the output. From the Detect Entities View, Chris notices the incorrect map-

pings, and selects the correct attributes from the respective drop-downs ( cars data . Accelerate �

and cars data . Edispl � ). Based on these new mappings, the system automatically updates

the sample data, and produces a new answer for inspection.

Add a new row

“germany” shows 
up in the answer 
on sample data

Figure 4.6: Scenario 2: DIY being used to debug a complex NL2SQL scenario.

Next, Chris wants to verify if the superlatives were interpreted correctly. Chris sorts the

records by Horsepower by clicking on the Horsepower column in the Sample Data View and
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verifies that the first (i.e., smallest) record matches the computed value in the Answer on

the Sample Data View. After similarly checking the Max operation, Chris is convinced that

the system now correctly performs the query. At this point, Chris notices a system alert

indicating that the mapping changes have only been applied to the sample testing database,

and that they must Apply or Reject them. Chris applies the changes and the Debug View

closes. The answer on the Production Data updates accordingly.

Scenario 2: Checking the System Strategy. Being curious about the European automo-

bile industry, Chris now asks the system, “Which countries in Europe have more than 2

car manufacturers?” (Figure 4.6). While checking the answer—Germany, France—they

wonder based on prior knowledge why Italy was not included. To investigate this, Chris

expands the Debug View and inspects the Detect Entities View. After confirming that the

existing mappings are correct, Chris checks how the query is being executed on the sample

testing database by reading through the four steps shown in the Explainer View: Step 1

joins the three tables; Step 2 removes non-European countries; Step 3 groups the rows by

countryId ; and Step 4 first counts the number of rows per countryId and then removes those

groups that have less than or equal to 2 rows (indicated by gray color and strike-through).

To verify the system’s strategy, Chris decides to test it by manipulating the sample data.

In the car makers table of the sample testing database, they add a new row for the German

car manufacturer “opel.” On inspecting the updates to the subsequent steps, Chris confirms

that “germany” now has three records, is no longer removed by step 4, and thus appears in

the final answer (step 5). Satisfied that Italy was likely excluded for having fewer than 3

records, Chris closes the Debug View � without making or applying further changes.

4.3 Evaluation: Exploratory User Study Using DIY as a Design Probe

After developing the DIY prototype and receiving an approval from our ethics board, we

conducted an exploratory user study and design probe with 12 participants. With this study,
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we aim to understand how users utilize DIY to assess the generated results for correctness,

and detect and fix errors in NL2SQL scenarios. In the following sections we describe the

participants, detail the high-level procedure, and present the specific study tasks. We then

present and discuss our findings.

4.3.1 Participants and Procedure

We recruited 12 participants (4 female, 7 male, 1 preferred not to say). They worked for a

large technology company in different roles including UX Designers, Design Researchers,

Site Reliability Engineers, Data Scientists, Cloud Solution Architects, Program Managers,

and Research Interns. We compensated each participant with a $25 Amazon Gift card.

Due to the COVID-19 pandemic, we leveraged numerous Internet collaboration tools

to conduct the study remotely. Participants were asked to complete a brief online demo-

graphics questionnaire, and to connect with the experimenter using the Microsoft Teams

teleconferencing software. Participants were then quickly briefed about the study, and

were presented with a 5 minute tutorial video that demonstrated the features of DIY. Fol-

lowing the video, the experimenter provided participants access to the study environment

by sharing the study computer’s screen and granting input control. Participants were then

asked to complete 8 tasks of varying difficulty using DIY, and to think out loud while

interacting with the system. Participants were free to ask questions at any time, and the ex-

perimenter occasionally asked questions to probe participants’ strategies. The study ended

with a debriefing in which participants completed a system usability score (SUS) [230]

questionnaire, discussed their overall experience with the system, and provided sugges-

tions for improvements. The entire session took 90 minutes to complete. All sessions were

screen-recorded, and transcripts were later generated using automated software.

The eight tasks were organized into sections according to complexity: 3 easy, 2 medium,

and 3 hard tasks (Table 4.3). Inspired by Spider [219], we determined the complexity based

on the count and types of SQL clauses (e.g., GROUP BY, INTERSECT, MIN()) and the count
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and types of errors in the generated SQL query (e.g., wrong operator, missing column). For

example, the query corresponding to Task #6 in Table 4.3 is hard because it has two JOINs

and one each of: WHERE, GROUP BY, HAVING, and SELECT.

Within each complexity level, half of the tasks resulted in correct outputs from DIY,

which participants might still choose to verify, while the other half contained NL2SQL

translation errors requiring correction. We curated these tasks by posing varied questions

to the RAT-SQL model and inspecting the responses, ensuring an equal distribution of

correct and incorrect outputs across a range of SQL complexities and error types.

Table 4.3: Tasks used in the evaluation of DIY. Each task includes: (1) the natural lan-
guage question input, (2) if it has errors (Yes or No), (3) type of error (e.g., Wrong opera-
tor), and (4) the heuristically determined overall task complexity (Easy, Medium, or Hard).

No. Question Error Error Type Complexity

1 What is the mean acceleration, minimum horsepower,
and maximum displacement among all cars?

Yes Wrong columns Easy

2 What is the average acceleration of cars each year? No - Easy
3 Which products are manufactured in Austin? Yes Wrong column Easy
4 Which products by Sony are priced above 100? No - Medium
5 Which car models are produced since 1980? Yes Wrong operator Medium

6 Which countries in Europe have more than 2 car
manufacturers?

No - Hard

7 Which continent has the most car makers? Also list
the count.

Yes Missing column Hard

8 Which car models are lighter than 3500 or built by BMW? No - Hard

4.3.2 Results and Discussion

Our observations revealed the benefits of using sample data to help users assess the cor-

rectness of the system’s responses, and both a range of debugging rationales and strategies

across participants. We present these observations below, and discuss observations that

could indicate where DIY may benefit from additional refinement.

General Reactions. Overall, participants liked DIY’s approach of using sample data to

explain the system’s strategy. P10 commented, “It is important to have this transparency

and to show people how the system is working and to let them control it. This is a great
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example of that.” P8 commented, “I think it’s really cool and I think there are a lot of

customers who would benefit from something like this.” P14 liked the multimodal explana-

tions, commenting “I really liked your idea of the linear stuff...kind of a visual explanation

of the query path.” Also, participants rated their experience with an average SUS of 65.42;

while this is encouraging, further refinement is possible.

Debugging Rationales. Our system’s initial response highlighted important tokens in the

question and the computed answer on the production database (Figure 4.2B,C). Participants

inspected these first and then, based on their assessment, optionally chose to expand the

Debug View. We observed different rationales for electing to debug, including: (i) the

option was available (“Just because I can!” – P8), (ii) they detected an error (everyone),

(iii) they just wanted to double-check the answer or strategy (almost everyone, “I want

to verify the Average.” – P1), (iv) they did not have enough domain expertise to trust the

answer on production database (“I am not good with cars” - P1), (v) they had some domain

expertise that led them to suspect the answer (“I can think of a couple more rows so I’m

just gonna verify” - P8). At times, participants did not utilize the Debug View because: (i)

they had begun to trust the system (“I will probably not verify, I trust the system by now.” –

P1, “Assuming the math is correct, this seems fine.” – P7), (ii) they were satisfied with the

orange highlights in the Annotated Question View (“it looks to me that it highlighted the

right keywords” – P5, P14). Many participants also expressed a need for additional context

to interpret the answers, even if that context was not explicitly requested in the original

question. For example, for the question “Which products by Sony cost more than $100?”

the system’s response returned only Products .Name values. P1, P7, and P17 wished to see

more columns, including the manufacturer and price, to facilitate inspection. Likewise, P7

suggested adding rows that do not match the criteria, and striking them out using the same

visual convention employed by the DIY Explainer View.
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Strategies. With the Debug View, participants employed three broad strategies to ver-

ify the query. In the first category were three participants (P1, P16, P17) who expressed

concerns about modifying the sample data, and predominantly utilized inspection (e.g., of

term mappings and explanations) to assess the correctness of the query. P1 commented,

“My judgement is based on the result I see, if I manipulate the data, I don’t trust the result

anymore, and I don’t trust the system anymore.”

In the second category were participants who modified the sample data to explore coun-

terfactual what-if scenarios. Specifically, participants modified sample data to (i) generate

positive (or negative) scenarios (“Now that I have been able to generate an affirmative case,

I am more happy with this” – P8) or (ii) to test specific boundary conditions (“I want to

make sure I have tested the right boundary conditions” – P15). We observed participants

manipulate the sample testing database in several ways. One participant chose to delete

irrelevant rows from the sample data (“I might as a matter of figuring this out remove ev-

erybody I don’t care about” - P8). One participant chose to add a new test row (“as I did

not want to manipulate existing data” - P15). One participant sorted the sample data tables

to verify the MAX and MIN superlatives in the question. Most participants edited specific

cells in the sample testing database, e.g., “ford” to “bmw” to verify a WHERE clause, or

change the CountryId from 1 to 2 to create a successful JOIN.

Finally, in the third category participants manipulated the mappings in the Detected

Entity View to, for example, test boundary conditions. One participant modified the oper-

ator mappings “is greater than” to “is less than” to test a reverse scenario (P8). Another

participant changed the attribute Price to Revenue to verify the query response updated

accordingly. This strategy is interesting because modifying the mappings changes how

the system interprets the user’s original question. Accordingly, these affordances were in-

tended for fixing errors or resolving ambiguities. Some participants were aware of this and

planned to revert to the original mapping after testing. Other participants were reminded

by the notification at the bottom of the Debug View.
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4.4 Limitations and Future Work

System Limitations. While the system supports modifying existing mappings from ques-

tion tokens to database columns or operators, it is more limited in what new mappings can

be added. For example, unmapped tokens may only be mapped to columns previously

implicated by the system’s original interpretation of the question. Likewise, the sample

data generation and the explanation generation modules currently do not support all SQL

constructs. For example, neither module generates smart constraints or multimodal expla-

nations for window functions (e.g., OVER) or wildcard operators (e.g., LIKE, %), since the

NL2SQL backend does not currently support these constructs, though future versions may.

Minimizing confusion between production and sample data. The DIY technique cur-

rently presents two distinct answers for any given query: one for the production database,

and a second for the sample testing database. At multiple points during the study, partici-

pants (P1, P8, P11, P14) exhibited confusion as to why the two answers did not match. P11

commented, “OK, so it says monitor here (in the Answer on Sample Data View), which

is what I was expecting. Why does it say CD drive, DVD drive (in the Answer on Pro-

duction Data View)?” They failed to recognize that the sample testing database is a very

small subset of the production database. We will further refine the user interface to clearly

distinguish between the two kinds of databases and minimize this confusion.

Generating a smarter sample testing database. The sample data generation module

identifies entities from the query and defines constraints that, if satisfied, would generate a

relevant sample. As discussed earlier, practicality and feasibility related restrictions further

constrain sampling. Participants pointed out this limitation when they encountered a sample

testing database that they felt they need to modify further to enable relevant debugging. P1

commented, “For me, to build trust with the system, I would want the system to be smart

enough and return sample data relevant to the question.” They went on to suggest the
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human to be more involved in the generation of the sample data, “I wonder if I could tell

the system to return sample data post 1980 so then I can verify if the answer is indeed

correct.” Thus, we will continue to refine our sample data generation algorithm.

Improving the multimodal explanations. Some participants found it challenging to fol-

low the explanations for certain SQL constructs. For example, P5 did not understand multi-

table JOIN conditions. P7 worried that the use of (too many) IDs in the sample testing

database and the JOIN condition resulted in added complexity. Some participants failed

to interpret compound SQL clauses (e.g., UNION) as it was presented in a linear manner

just like other SQL clauses. We will thus explore alternate representations for these SQL

clauses (e.g., representing subqueries in a tree-like representation, and using animations to

visualize multi-table join operations).

Handling ambiguities between conversational and formal language. For one of the

task questions–“Which car models are produced since 1980?”–the NL2SQL system mapped

the token “since” to the “greater than” operator. In colloquial conversation, “since” often

implies a “greater than or equal to” operation, and thus this mapping needed to be fixed. It

was interesting that six participants (P1, P7, P11, P12, P15, P17) pointed out this ambigu-

ity, commenting that it is sometimes up to the user’s interpretation. In the future, we will

put guardrails to caution the user when making decisions about such ambiguities.

Leveraging manipulation to facilitate understanding. Recall some participants modi-

fied the mappings between the question and the database entities to either test a boundary

condition (e.g., is greater than → is less than) or to observe a change (e.g., Price → Rev-

enue). This was interesting as the participants deliberately modified what were already

correct mappings. We envision this to be an opportunity to support data exploration. For

example, consider a scenario wherein a user first asks for cars with Acceleration>100 and

upon inspecting the answer, is interested in cars with Acceleration>200 instead. Answer-
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ing this question in a QA system generally involves paraphrasing the original question.

Teach SQL. We believe NL can be a powerful tool for teaching SQL. Existing tools (e.g.,

SQL Fiddle [231], Tryit Editor [232]) already provide users with a sandbox for executing

SQL queries on datasets. Integrating DIY could provide an NL interface to help novices

formulate SQL queries along with step-by-step multimodal explanations.

4.5 Summary

In this chapter, I described a question-answering chatbot system, enhanced with an inter-

active, self-service debugging view (Debug-It-Yourself (DIY)), for users to interactively

debug (i.e., inspect for, isolate, and fix errors in) natural language to SQL (NL2SQL) work-

flows; essentially, guide themselves through the system’s execution process. DIY provides

users with a sandbox where they can interact with (1) the mappings between the question

and the generated query, (2) a small-but-relevant subset of the underlying database, and (3)

multimodal explanations of the generated query. Through an exploratory user study with 12

participants, we investigated how DIY helped users assess the correctness of a state-of-the-

art NL2SQL system’s answers and isolate and fix errors. Our observations revealed how

DIY helped participants assess the correctness of the system while providing insights about

different debugging strategies, and associated challenges. For details, I refer the reader to

the associated publication [26] and patent [15].
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CHAPTER 5

DESIGNING A MIXED-INITIATIVE, CO-ADAPTIVE GUIDANCE SYSTEM

In this chapter, I describe a mixed-initiative system that facilitates a co-adaptive guidance

dialog between the user and the system, Lumos [27].

Lumos helps increase awareness of exploration biases by visualizing traces of a user’s

interactions. Additionally, Lumos also allows users to customize the target/baseline inter-

action behavior and receive contextual guidance, partly achieving RG2: Design a mixed-

initiative guidance system, wherein the user and the system learn from and take initiative

on behalf of each other, co-adaptively steering the analytic process.

This chapter is based on work published in IEEE TVCG [27].

5.1 Motivation and Background

Visualizations take advantage of people’s perception to facilitate intuitive understanding of

data. Interactive features of visualizations become critical when considering complex data,

allowing people to progressively refine visual representations of data, e.g., by adjusting

encodings to represent different attributes of the data or employing filters to reduce the

scope of the data at hand. While it can aid in comprehension of large and complex data,

certain patterns of interactivity can signal insular data analysis practices. Users may be

unknowingly stuck inside an “echo chamber”, where their own unconscious biases may

lead them to attend to certain parts of the data while neglecting others.

Unconscious biases can take many forms, some of which are relatively innocuous (e.g.,

preference for a particular chocolate flavor) while others can lead to costly incorrect de-

cisions or engender harmful societal stereotypes (e.g., dark-skinned people are denied pa-

role [233]). Apart from implicit biases and stereotypes, there are other cognitive and per-

ceptual biases that also influence people’s analytic behaviors. Cognitive biases describe
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systematic errors that can result from the use of “fast and frugal” heuristics [234] to make

decisions. Several biases have been shown to affect decision-making tasks involving vi-

sualizations (e.g., [235, 236, 237, 238]). Yet, common visual data analysis tools such as

Tableau and Microsoft Excel that help users see and understand their data do not report

analytic behaviors that may correspond to such biases. So we asked: “how much can un-

derstanding data analysis and decision-making behaviors reduce the potentially negative

influences of potential cognitive, perceptual, or societal biases, if users were simply more

aware of these often unconscious factors?”

In response, we built a visual data analysis system (Lumos) and study how showing

a user prior interaction history (introducing the concept of “interaction traces”) might

be used to mitigate potential biases that may be driving one’s data analysis and decision-

making, as described next.

5.2 Lumos

Lumos is a visual data analysis system that visualizes interaction history with data (i.e.,

interaction traces [25]) to increase awareness of potential interaction biases that influ-

ence data analysis and decision-making processes. Using in situ and ex situ visualization

techniques, Lumos provides real-time feedback about a user’s analytic behavior for self-

awareness and self-reflection to potentially change future course. For example, Lumos

remembers and highlights datapoints that have been previously examined in the same visu-

alization (in situ) and overlays the interacted datapoints on the underlying data distribution

in a separate visualization (ex situ) for comparison. Furthermore, Lumos allows users to

configure a custom target distribution to reflect decision-making goals, e.g., a university

admissions committee in a computer science department may define an analysis target of

60% female to promote increased gender diversity in the department, even if only 40% of

applicants are female. In doing so, Lumos facilitates a co-adaptive guidance dialog [44].
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5.2.1 Design Goals

Our development of Lumos was driven by five key design goals. We compiled these goals

based on a combination of similar prior visual analysis tools [84, 239, 109], formative

feedback from pilot studies, and our own hypotheses with respect to usability.

DG1. Capture and present analytic behavior with attributes. Overemphasis (or un-

deremphasis) on specific attributes during data exploration may lead to unconscious

biases (e.g., not interacting with a Gender attribute may practically result in a bias to-

wards men if the dataset has more men than women). This goal translates to capturing

user interactions with attributes, modeling analytic behavior, and showing interaction

traces to increase awareness to influence changes in subsequent interactions.

DG2. Capture and present analytic behavior with datapoints. Overemphasis (or under-

emphasis) can also occur on specific values of data (e.g., interacting mostly with a

few top candidates for university admissions may come at the expense of neglecting

other candidates). This translates to the same goal as DG1 but at the datapoint-level.

DG3. Facilitate configuring different target distributions. Determining overemphasis

(or underemphasis) on specific attributes or data requires comparing a user’s analytic

behavior with a known target distribution (e.g., the underlying data) as a baseline.

However, different domains, tasks, attributes, or social norms may call for different

target distributions. This goal translates to allowing users to configure different target

distributions to suit their requirements.

DG4. Facilitate comparison between analytic behavior and a baseline distribution.

This goal translates to visualizing the user’s analytic behavior and the configured

target distribution and quantifying the difference between the two distributions.

DG5. Facilitate visual data exploration while showing awareness. This goal ensures

that system usability is not sacrificed by the added awareness visualizations.
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5.2.2 Quantifying Analytic Behavior

We quantify analytic behavior using (1) the attribute distribution (AD) metric [111] and (2)

the relative frequency of interactions with data and attributes. The AD metric characterizes

how a user’s interactive behavior deviates from expected behavior, and ranges from 0 (no

bias) to 1 (high bias). By default, the system chooses a proportional baseline of expected

behavior, wherein interactions with any given datapoint are equally likely, reflecting the

true underlying distributions of attributes in the dataset. For example, if a user primarily

interacts with PG-13 movies in a dataset that predominantly contains G-rated movies, the

AD metric for the Content Rating attribute will be high (more emphasis). If the user instead

spent more time interacting with G-rated movies, proportional to the distributions in the

dataset, the AD metric value for Content Rating would be low (less emphasis).

Additionally, Lumos enables users to define their target interactive analytic behavior

(or alternative baselines) in multiple ways: (1) by proportional interactions across the var-

ious attribute distributions of the dataset, (2) by equal interactions across the categories

of the dataset, and (3) by defining a custom target distribution of interactions across the

data (DG3). For example, consider a dataset of job applicants, where 50% of applicants

identify as male, 40% of applicants identify as female, and 10% of applicants identify as

non-binary. A proportional baseline would define the target distribution of interactive

behavior such that 50% of interactions should be with male applicants, 40% with female

applicants, and 10% with non-binary applicants, while an equal baseline would set the tar-

get distribution of interactions with 33.3% male applicants, 33.3% female applicants, and

33.3% non-binary applicants. If, for instance, diversity is a target in filling this particular

role, then a custom baseline might be set, where the target interaction distribution is 40%

female, 40% non-binary, and 20% male applicants. Figure 5.3 summarizes these settings

in the context of a dataset about movies for the Content Rating attribute, and shows (in

blue) how the user’s actual analytic behaviors compare to the target. Users can configure

proportional, equal, or custom target distributions per attribute in Lumos. In the custom
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mode for categorical attributes, users are presented with an interactive bar chart where they

can drag individual bars (each representing a category) to their desired relative weights. For

quantitative attributes, users can sketch a target distribution by clicking (to add new quan-

tiles) and dragging points in the presented interactive histogram. Section 5.2.4.3 describes

an example usage scenario demonstrating equal and custom target distributions.

5.2.3 User Interface

A GC

D

E

F

B

H

Target

Target

Figure 5.1: The Lumos UI includes traditional visual data analysis functions – A Data
Panel, B Attributes Panel, C Encoding Panel, D Filter Panel – and shows analytic
behavior as in situ and ex situ interaction traces in the B Attributes Panel, E Visual-
ization Canvas, F Details View, and G Distribution Panel as the relation between the
user’s analytic behavior and a target distribution (e.g., the underlying data), and a H Set-
tings Panel to configure different targets (e.g., proportional (default), equal, and custom).

The Lumos user interface consists of the following views:

A Data Panel shows the currently loaded dataset.

B Attribute Panel shows dataset attributes and their datatypes: {Nominal (N; ~),

Quantitative (Q; �), Temporal (T; �)} and buttons to apply a filter (s).

C Encoding Panel shows UI controls (dropdowns) to create visualizations by spec-

ifying different encodings: {Chart Type, X Axis, Y Axis, Aggregation}. Lumos
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currently supports four visualization types: {scatterplot, strip plot, bar chart, line

chart} and five aggregation types: {count, sum, minimum, maximum, average} de-

pending on the attribute data type combinations.

D Filter Panel shows UI controls (range sliders for {Q, T} and multiselect dropdowns

for {N} attributes) to filter data. Filters can be added by clicking on s in the At-

tribute Panel B (DG5).

E Visualization Canvas renders the visualization based on the Encoding C and Filter

D Panel specifications.

F Details View shows additional information when the visualization elements (e.g.,

point, bar, strip) in E are interacted with. Hovering on a single datapoint (e.g., a strip

in a strip plot) shows a list of all attribute values for the given datapoint (Figure 5.1F).

Hovering on an aggregation of datapoints (e.g., a bar of a bar chart) shows a table of

all datapoints that belong to that aggregation (the bar) with attributes as columns and

values as rows (Figure 5.2).

G Distribution Panel shows a list of attribute cards similar to the Attribute Panel where

clicking on a card toggles open/close a visualization that overlays user’s interaction

traces on datapoints (blue area) on the target distribution (black curve) (DG3).

H Settings Panel shows UI controls (radio buttons) for each attribute to switch between

target distributions. Currently, Lumos supports three types of target distributions:

Proportional (default), Equal, and Custom (DG4). For the Custom type, users are

presented with an interactive bar chart (N) or an interactive area chart (Q, T) to drag

and sketch custom target distributions.

5.2.3.1 In situ Interaction Traces

Visualization Canvas. Lumos tracks user interactions with visual representations of dat-

apoints (e.g., bars, lines, points, strips) and colors them on a white→blue scale based on the

relative frequency of interactions, e.g., dark blue color represents more interactions (Fig-
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ure 5.2) and white represents no interactions. Lumos captures mouseover interactions as a

proxy for modeling analytic behavior from interactions with datapoints. Lumos employs

a heuristic to ignore mouseovers that are active less than a 350 milliseconds threshold,

regarded as random, accidental, or unintentional.

An interaction with a unit visualization (e.g., hovering on a point in a scatterplot of

Running Time and Worldwide Gross) is handled differently than an interaction with an ag-

gregate visualization (e.g., hovering on a bar showing average Running Time of Action

movies). In the former scenario, Lumos treats it as one complete interaction with the corre-

sponding datapoint incrementing its interaction counter by 1. In the latter scenario, Lumos

treats the interaction as a set of partial interactions with all constituent datapoints (e.g.,

all Action movies), incrementing their corresponding interaction counters by 1/N where

N=number of constituent datapoints.

Details View. When an aggregate visualization element (e.g, bar) is hovered on, the De-

tails View below the chart shows a table with each datapoint. Lumos captures a mouseover

on a table row, treats it as an interaction with the corresponding datapoint, and leaves an

interaction trace by updating the table row’s background color (Figure 5.2).

Attribute Panel. Like datapoints, Lumos also tracks user interactions with attributes.

Each attribute card in the Attribute Panel is colored on a white→blue scale based on the

corresponding number of interactions (white=no interaction; darkest blue=most interac-

tions). Lumos captures attribute assignments to encodings (e.g., X, Y) and filters (e.g.,

Gender=Male) as a proxy for modeling analytic behavior from interactions with attributes.

These interactions are totaled and normalized relative to the most interacted attribute to

determine the resultant shade of blue, e.g., in Figure 5.1B, Genre has been interacted with

most (dark blue) and Worldwide Gross has not been interacted with at all.
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Figure 5.2: In situ Awareness of Interaction Traces

5.2.3.2 Ex situ Interaction Traces

Lumos allows users to compare their analytic behavior with a target distribution. Attribute

cards in the Distribution Panel are colored on a red→gray→green scale (Figure 5.1G) based

on the difference between their respective analytic behavior and underlying distributions (as

quantified by Wall et al.’s [111] AD metric). In this evaluation, we set the target distribution

to the underlying data. A red background indicates that the user’s analytic behavior is

different from the target distribution (green background indicates similarity). For example,

inspecting the visualization for Production Budget shows the analytic behavior peaking

around 150M (blue area) when most movies have a budget under 50M (black curve); the

magnitude of the deviation is high resulting in a red background. Similarly, the computed

analytic behavior (blue bars) on Content Rating is more closely matching the underlying

data (black strips) resulting in a green background.
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Figure 5.3: Ex situ interaction traces for three modes of target distributions (Proportional,
Equal, Custom). These targets in the charts are presented as black curves/strips along with
user behavior (blue area). Lumos also computes the difference between target and observed
behavior and encodes it as the background color of the corresponding attribute card (red,
gray, green colors where redder=more different; greener=more similar).

5.2.4 Example Scenarios

5.2.4.1 Scenario 1: Increasing awareness of analytic behavior

Assume Austin is looking for a new home and is exploring a housing dataset in Lumos

(Figure 5.4). After acquainting themselves with the attributes, they apply three filters that

match their criteria: {Home Type=Single Family; Price ≤ $300K; Satisfaction ≥ 7} (Fig-

ure 5.4a). Then, they create different visualizations by specifying encodings (Chart Type,

X, Y, and Aggregation) in the Encoding panel (Figure 5.4b).

While interacting with these different visualizations, they observe visualization ele-

ments (e.g., bars, points) changing colors to different shades of blue. For example, in the
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scatterplot configuration with Lot Area (Y axis) and Year (X axis) (Figure 5.4c), Austin

observes their focus has been on smaller (Lot Area ≤ 60K) and more recently constructed

(2009 ≤ Year ≤ 2010) homes. Similarly, in the barchart configuration with Foundation

Type (X axis) and Average(Price) (Y axis) (Figure 5.4d), they observe they have not fo-

cused on two types of Foundation Types: {Brick & Tile, Poured Concrete} (white).

During their analyses, they also observe different shades of blue in the Attributes Panel

(Figure 5.4e) inferring they have not focused on all attributes equally, e.g., they focused

more on Price and Satisfaction (darker blues), not so much on Year and Foundation Type

(light blues) and not-at-all on Fireplaces and Heating Type (white).

After acknowledging that they did focus on the blue attributes, they start inspecting the

five white attributes. They state they do not care about {Lot Config and Fence Type} but

regret not focusing on the other three attributes (Heating Type, Fireplaces, Central Air)

associated with climate control as the city faces severe winters. Accordingly, they apply

new filters and encodings and continue their analyses.

In this way, Lumos helped Austin in house-hunting by making them more aware of

their analytic behavior with data and attributes.

Year

Lo
t A

re
a

More focus on Price (dark blue), 
less focus on Lot Config, and no 
Focus on Roof Style (white).

More focus on Slab
(dark blue), less focus 
on Stone, and no focus 
on Brick & Tile (white) 
Foundation Types.

More focus on recently 
constructed (Year) and 
smaller (Lot Area) 
houses (blues).

e

a

b c

d
Brick & 

Tile
Poured 

Concrete

Figure 5.4: Lumos Example Scenario 1: Increasing Awareness of own Data Analysis
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5.2.4.2 Scenario 2: Mitigating biased analytic behavior

Kiran, a loan officer, is using Lumos to analyze loan applications to determine credit-

worthiness. After exploring the dataset for a while, they observe a red Home Ownership

Type attribute card and a green Age attribute card (Figure 5.5a) in the Distribution Panel.

They express happiness at not exhibiting any age bias but are concerned that their inter-

actions with Home Ownership Type significantly deviate from the underlying data (target)

distribution. They click on the card to toggle it open and begin inspecting the visualization.

They observe they have unknowingly overemphasized on Own and Rent and underempha-

sized on Mortgage Home Ownership Type. Willing to correct their behavior, they apply

a (reverse) filter: {Home Ownership Type=Mortgage} (Figure 5.5b) and analyze a few

previously unconsidered (white) points (Figure 5.5c). They finally see a greener Home

Ownership Type card (Figure 5.5d) and are more content.

Apply a filter Mitigate bias (no more reds)

Interact more

Detect bias (in red attribute)

c

a b d

Age

Target Target

Target

Target

Figure 5.5: Lumos Example Scenario 2: Mitigating Biased Analytic Behavior
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Figure 5.6: Lumos Example Scenario 3: Configuring Custom Baselines

5.2.4.3 Scenario 3: Configuring custom baselines

Viktor, a sports journalist, is using Lumos to analyze a dataset of European soccer players

to write a news article (Figure 5.6) and they have a specific criterion to focus their anal-

ysis. They want to equally focus on player positions: {Goalkeeper, Defender, Midfielder,

Forward} (and not in proportion to the underlying data distribution which may result in

favoritism due to different proportions of player positions). In the Attribute Panel, they

click on � next to Position (Figure 5.6a) and check the Equal radio button. The corre-

sponding visualization in the Distribution Panel immediately updates with the black curves

now all set at 100/4=25% (Figure 5.6c).

Next, they want to write a special section on the rising stars (younger players) and the

old guard (older players). They check the custom radio button for Age and sketch a target

distribution: {50% for ages under 23, 15% between 23 and 32, 35% above 32} by clicking

(to add new quantiles) and dragging points in the visualization canvas (Figure 5.6b).
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Finally, they want to focus on ambipedal players (comfortable shooting with either

foot). They again check the Custom radio button and are presented with an interactive bar

chart (Foot is an N attribute) and drag the bars with their mouse until their target distribu-

tions are reached: {50% Both, 25% Left, 25% Right, 0% Unknown} (Figure 5.6d).

Subsequent interactions will trigger the recomputation of the metrics but based on these

updated target (baseline) distributions. Hence, Lumos helped Viktor specify different target

distributions to compare their analytic behavior based on the task.

5.3 Evaluation 1: User Study to Understand How Interaction Traces in Lumos In-

crease Awareness of Analytic Behaviors

5.3.1 Participants and Procedure

We conducted a between-subjects qualitative study with the aim of understanding how

Lumos helps users increase awareness of their analytic behaviors.

Participants. We recruited 24 participants who were either students, researchers, or in-

dustry professionals with a background in computing (e.g., computer science, human-

computer interaction, human-centered computing) and a self-reported visualization literacy

≥ 3 (on a 5-point Likert scale). Participants were randomly divided into either a Control

or Awareness condition, which determined the system version they used for the study. Par-

ticipants in the Control condition did not see the Distribution Panel (along with the ex situ

interaction traces) nor did they see the in situ interaction traces in the Visualization Canvas,

Details View, and Attribute Panel. We set the target distribution to Proportional and hid

the Settings Panel for both conditions.

Task. We tasked participants to:

Analyze a tabular dataset of movies to recommend the characteristics of movies that a movie

production company (e.g., Netflix [240]) should make next.
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The dataset consisted of 709 movies (rows) and 9 attributes (columns): Production Bud-

get (�), Worldwide Gross (�), Running Time (�), IMDB Rating (�), Rotten Tomatoes

Rating (�), Release Year (�), Content Rating (~), Genre (~), and Creative Type (~).

Participants were encouraged to think aloud and their interactions were recorded.

Hypotheses.

H1 Interaction traces will increase awareness of analytic behavior.

H2 There will be differences in interactive behaviors of Awareness v. Control partici-

pants (as measured by bias metrics [111], differences in use of filters, and number of

charts created).

H3 Participants will find the ex situ awareness features to have greater utility than in situ

awareness features.

H4 Participants in the Awareness condition will react to interaction traces in ways to

reduce potential biased analytic behaviors.

5.3.2 Results

Only Awareness participantsbBoth Control and Awareness participantsa

In-situ Interaction Traces Ex-situ Interaction Traces

1 = Not at all useful
5 = Extremely useful

Participant

White-Blue Colors in the Attribute Panel

White-Blue Colors in Visualization Canvas

White-Blue Colors in Detail View

Red-Green Colors in Distribution Panel

Bar Charts for N attrs in Distribution Panel

Area Charts for Q, T attrs in Distribution Panel

Attribute Panel

Encoding Panel

Filter Panel

Visualization Canvas

Details View (Unit)

Details View (Aggregate)

Figure 5.7: Summary of usefulness scores of all Lumos features as reported by participants
in the post-study questionnaire, as RainCloudPlots [241].

Below, we present our study findings and discuss them in context of participant feed-

back. PA01-PA12 and PC13-PC24 refer to the 24 participants in Awareness and Control
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conditions, respectively. Participant quotes and moments of awareness were coded and cat-

egorized using affinity diagramming. The lead author proposed an initial set of categories

that were then iteratively refined with co-authors until a consensus was reached.

5.3.2.1 General Feedback.

Overall participant feedback was positive with PA01 commenting, “[they] haven’t seen

many things like [Lumos] before...really good technique.” PA09 mentioned that “[Lumos]

can remove the internal bias of things users think are of the most interest.” Participants

found “the ability to keep track of [their] provenance, interaction history [as] interesting”

(PA08) and “communicating it back [how they are doing] as something [they] would use

in [their] tools” (PA07). PA09 found the Distribution panel “a great idea to show users

what their focus was” and PA05 found it “very helpful as [they] don’t need to create visu-

alizations in the Vis panel for each attribute to see [their] distributions.” PA05 suggested

“integrating this tool into existing tools such as Tableau [as] they don’t have a feature that

tells [them] what attributes haven’t been used yet” (PA12). PA07 suggested “there are lots

of use-cases for this technique in journalism and social media, e.g., you have only looked

at Trump’s negative tweets, but what about Biden’s?” Two participants found the Distribu-

tion Panel less useful as they “didn’t know exactly what to do about the [red-green] cards”

(PA5) or felt it “out of focus” on the right side of the screen (PA10).

5.3.2.2 Usefulness Scores: Lumos user interface.

Figure 5.7a summarizes Lumos’s usefulness scores (1=Not useful at all; 5=Extremely use-

ful) as reported in the post-study questionnaire:

Attribute Panel. Participants generally found the attribute list useful (≥3 out of 5, medianA=4,

medianC=4.5) along with “their data types” (PC21) “unlike, e.g., Excel where they aren’t

always on-screen” (PC17).
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Encoding Panel. 23 participants found the Encoding Panel to be useful (medianA=4,

medianC=4, “it is standard in a good way” - PC21) except PC23 who found it “only

slightly useful.” Four participants noted that the system messages to fix incorrect encod-

ings were intuitive and helpful (“it is sometimes hard to know what’s wrong in Tableau” -

PA05) but two found them confusing and suggested the app “prevent [them] from choos-

ing incorrect encodings” (PC18) by “filtering out the chart types that are not allowed”

(PA11). Five participants also suggested additional features (“add color as a third encod-

ing” - PC24) and enhancements (“support drag-drop attributes to the Encoding Panel” -

PC{17,18,19}, “support text entry for the dropdowns” - PA12).

Filter Panel. Participants utilized filters (medianA=4, medianC=4.5) “to remove outliers

and to confirm hypotheses about the data” (PC22), to see the different values for a categor-

ical attribute (PC19, PC23), and to mitigate any unconscious biased analytic behavior (e.g.,

“Comedy and Drama are high percentage in the dataset, and I haven’t interacted with them

at all, so it might be worth my time to look at them.” - PA09). PA10 did not utilize filters

as they were “being more exploratory with [their] analysis and if [they] wanted to look at

finer details, [they] would have used more filters.” Three participants also requested en-

hancements to “specify precise inputs [for Q,T values]” (PC22), “allow hover on a value

in the categorical filter and highlight in the Visualization” (PA09), and “support select-

and deselect- all for categorical values” (PA11).

Visualization Canvas. 23 participants found the Visualization Canvas useful (medianA=5,

medianC=4.5), utilizing it to “observe patterns and outliers” (PA10), and “see the differ-

ent categories and values in the attributes” (PC14). PC18 “did not find it useful because a

third attribute encoding, e.g., color was not supported”.

Details View (Unit). This view received mixed usefulness scores from our participants

(medianA=2, medianC=3). PC17 “liked the Details portion and being able to hover over
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points for more details.” PC19 and PA11 “didn’t find the Details view for single data

points super useful” because they wanted the name of the film to bring prior knowledge to

the analysis and spark different hypotheses1.

Details View (Agg). This view also received mixed usefulness scores from our partici-

pants (medianA=3, medianC=3). PC18 found it to be “really useful because it is not ap-

parent from the bar shape and size that some bars only have one point in them versus some

bars having six or seven points.” PA07 said “[they] don’t really hover on things in e.g., a

scatterplot but information shown on hovering a bar chart [the details view agg] was awe-

some because you showed individual data”. Also, “it shows all information in one space.”

(PC20, PC24) and “could be useful for multivariate hypotheses” (PA10). Two partici-

pants found it “hard to draw conclusions from lists of words and data” (PC17, PC19) and

preferred to see the information visually utilizing the Details View “only as a reference”

(PC19). PC18 utilized the Details View “because the visualization wasn’t as helpful”.

5.3.2.3 Usefulness Scores: Lumos technique of presenting interaction traces

Participants in the Awareness condition also saw in situ and ex situ (Distribution Panel) in-

teraction traces in the user interface. Figure 5.7b summarizes the usefulness scores (1=Not

useful at all; 5=Extremely useful) as reported in the post-study questionnaire:

Difference between analytic behavior and target distribution. Ten participants found

the difference between their analytic behavior and the underlying data (red-green coloring

in Distribution Panel) very useful (medianA=5) “giving a sense if I’m looking at the dataset

in an unbiased way” (PA06).

Ex situ interaction traces in Distribution Panel. The overall feedback on the ex situ in-

teraction traces in the Distribution Panel was positive; participants found the bar charts for

1Note: the movie title (Title) was deliberately not shown in the Detail View to prevent personal experiences
with data to influence the analysis.
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N attributes (medianA=4) more useful than the area charts for Q,T attributes (medianA=4)

with PA06 nicely summarizing, “I can track and channel my focus based on discrete bar

charts by applying a filter...but it is difficult to discretize and track a continuous [Q,T] at-

tribute”. For eight users, these real-time traces helped increase awareness (“Geez, I haven’t

looked at Drama movies at all”-PA07), influencing them to interact differently (e.g., by

creating a bar chart with Genre to inspect movies of other potentially underemphasized

genres) while two participants either ignored them (“I never looked at the individual dis-

tributions of attributes”-PA12) or preferred to look at them after analysis “as the bars will

be moving, and that’s distracting” (PA09).

In situ interaction traces in Visualization Canvas. There was mixed response to the in

situ interaction traces (white-blue colors) in the Visualization Canvas (medianA=3). For

PA06, they “helped in tracking visited points” nudging them to interact with uninteracted

points, while for PA05 they were confusing and distracting, nudging them to re-interact

with them. PA08 did not want the colors to stay persistent but “be able to clear existing

interactions and start a new session with a new set of model movies for comparison”.

In situ interaction traces in Details View. Only four participants found the in situ inter-

action traces (white-blue colors) in the Details View to be useful (medianA=1).

In situ interaction traces in Attribute Panel. Participants generally found the in situ

interaction traces (white-blue colors) in the Attribute Panel to be useful (medianA=4). They

helped increase awareness of already-interacted attributes (“I see that I have spent a lot of

time on Release Year so I’ll now see something else”–PA05) but also required some time to

get acquainted with (“the coloring in the Attributes panel...I did’t use it initially, and later

on it hit me that I had this feature. Once I noticed it, it was very useful”–PA12).

100



Summary. Comparing the distributions of scores for the aforementioned features (Fig-

ure 5.7b), participants found the ex situ interaction traces more useful than the in situ in-

teraction traces, supporting H3, consistent with experimental results from [25]. We believe

this is because in situ interaction traces are always visible to a user whereas ex situ inter-

action traces can be used more on-demand without side-tracking the analysis task at hand.

Furthermore, in situ traces block an otherwise common attribute encoding channel, color,

that can be undesirable for and cause inconvenience to some users.

5.3.2.4 Awareness Moments

In situ traces in the Attributes Panel. There were instances when Control participants

expressed a need for tracking the already-interacted attributes. For example, we observed

PC13 use hand gestures to recollect and count the attributes that they had already visited

and PC14 exclaimed, “I hope I have interacted with all (attributes)”. Awareness partici-

pants, on the other hand, saw the interaction traces and had several instances of awareness

during their respective analyses. Two participants acknowledged their choices (“I don’t

think Release Year should matter too much, hence I am not interacting with it.”-PA04, “I

don’t think Running Time is important to me”-PA07) while two participants also suggested

correcting future course via interaction (“I see that I have spent a lot of time on Release

Year so I’ll now see something else”-PA05, “[on seeing a white attribute bar] now I’m go-

ing to interact with Running Time”-PA22), also supporting H4. Two participants reflected

upon their choices while answering questions pertaining to self-reported focus on individ-

ual attributes in the post-study questionnaire (“actually I forgot, had I remembered, it might

have been interesting to not click on the same thing over and over.”-PA03, “I didn’t use the

blue attributes panel but now that I see these questions, I would’ve seen them more”-PA08).

These and the desire for awareness moments by Control participants validate H1.
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In situ traces in the Visualization Canvas and Details View. Eight participants found

the in situ interaction traces to be useful; two participants took some time to get acquainted

with them (“very useful but I learnt about them slightly afterwards”-PA01, “I was initially

confused but then over use I got used to them and found them useful in tracking visited

points”-PA06). PA03 found the colors to be useful but questioned the technique because

“if it is based on [me] hovering on a point again and again, it might not be 100% correct.”

PA05 was “getting drawn to the visited points (instead of the white un-visited points).”

There was minimal commenting on the in situ traces in the Details View but it led to some

awareness for PA04 who hovered on an uninteracted (white) bar in a bar chart and observed

“there aren’t many blue rows which means I haven’t been focusing on it.”

Ex situ traces in the Distribution Panel. There were multiple instances of awareness

among participants (supporting H4). PA04 verified the interactions traces by comparing

it with ground truth (“distribution of my focus on Running Time (blue) is representative

of the applied filter”). PA05 reflected upon seeing three red attributes in the Distribu-

tion Panel and hypothesized that they were “just thinking aloud and exploring and will

(now) follow a more targeted approach”. PA05 reflected upon seeing a red Content Rat-

ing attribute (“Seems I didn’t interact with R-rated movies enough so this view nudges me

towards those”) and applied a filter to show only R-rated movies. PA07 reflected upon the

white Drama category in the Distribution Panel and justified that they “didn’t care about

Dramatization movies [...] who cares?” At one point, PA07 observed many red cards and

exclaimed, “this is so biased but whatever.” PA11 tried to correlate the effects of their inter-

actions with different attributes (“I noticed that Adventure is representative of most values

in Rotten Tomatoes Rating and IMDB Rating [...] This is because I mostly interacted with

just Adventure movies and that caused those attributes [in the Distribution Panel] to be

colored green”). PA10 did not use the Distribution Panel as they “didn’t know how to use

it in the context of what [they were] doing”.
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5.3.3 Discussion

5.3.3.1 Using Color to visualize interaction traces

Fun, Focus, Distraction, or Inconvenience? Our participants had mixed opinions on

seeing the changing colors in the visualizations (e.g., scatterplot points). Most participants

found the changing colors fun and helpful as they helped them be more aware of their (bad)

behavior, triggering a shift in their emphasis towards correction / mitigation. However,

many participants also found them to cause inconvenience or be a distraction motivating

the need to study alternate encoding approaches. One participant was drawn to the already

visited (colored) points instead of the unvisited points. Another participant confused the

blue colors with an attribute encoding; this is a disadvantage of encoding interaction traces

to the color channel. Another participant was cautious of their interactions so as not to skew

their interaction trace (interactions). Another participant questioned using the mouseover

(hover) interaction as a proxy for focus and altogether ignored the resultant coloring, sug-

gesting using proximity and not an exact hover as the metric to determine focus. Another

participant noted Lumos to be color-blind safe from an accessibility standpoint.

While in this evaluation of Lumos, we studied the usage of color (shades of blue, red,

and green) to encode interaction traces, there are other visual variables that can be modified

to encode and convey the same information, e.g., stroke color, stroke width, size, shape,

orientation, opacity, etc. It must be noted that some visual variables might work better for

certain visualizations than others (e.g., modifying color works better for a scatterplot than

a strip plot) and that some variables may not even be applicable for certain visualizations

(e.g., it is difficult to modify the shape of a line chart). Exploring this design space will

help derive guidelines for effective in situ and ex situ visualizations.
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5.3.3.2 The role of target distributions

Target distributions in Lumos serve as a benchmark against which analytic behavior can

be compared. For some tasks, meaningful target distributions may exist (e.g., forming

committees with specific representation from certain groups). However, it may be harder

to articulate a target distribution for other decision-making tasks, in which case standard

baselines for comparison are more meaningful. Lumos allows users to modify these or use

the data distribution as a default.

5.3.3.3 False positives in modeling analytic behavior

The Lumos technique of presenting interaction traces can be subject to false positives. For

example, users might intentionally not interact with an attribute because it is either not

important or they are not interested in it. Labeling these as underemphasized may not be

correct, as it was a conscious decision by users to ignore them. Furthermore, a categorical

attribute, when encoded along one of the scatterplot axes, can lead to the formation of vi-

sual clusters that offload a cognitive task to a perceptual one, rendering that attribute’s filter

somewhat redundant. On the other hand, users can also unintentionally neglect aspects of

data, e.g., the Attribute Panel may not be able to fit all attributes of a dataset, causing the

attributes that are outside the viewport to be potentially neglected during analysis. Lumos

helps the user tackle both: by showing unintentionally uninteracted attributes and by al-

lowing users to intentionally set custom target distributions for attributes. As a potential

feature, Lumos can explicitly present an attribute-level flag that allows the user to tag the

attribute as important during analysis or not.

5.3.3.4 Toward additional mitigation strategies

Based on Lumos results, interaction traces help increase the user’s awareness of their anal-

ysis practices, sometimes influencing them to interact and mitigate unconscious biased ana-

lytic behaviors. We believe this is a passive mitigation strategy since the user has to inspect
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the difference between their analytic behavior and the target distribution and devise an ap-

propriate strategy, e.g., by applying a filter. Some participants suggested we implement a

more active mitigation feature with “a button to automatically apply a reverse filter [in-

stead of them having to manually apply it]”, “especially for continuous attributes”. For ex-

ample, one participant saw their interactions with different Genres (Concert, Documentary,

and Western) and reflected “[they] should now interact with Drama since that is maximum

and these are almost nil”. They applied a filter to correct their unintended underempha-

sis but after a few interactions found themselves overemphasizing towards Drama movies

and reversed the filter. This act of balancing focus across all attributes can lead to frustra-

tion, sidelining the analysis task at hand. This was our motivation to build mixed-initiative

systems that more actively assist the user in mitigating biased analytic behaviors, e.g., ex-

plicitly recommending addition (or removal) of a set of filters that negate the overemphasis

(or underemphasis) or automatically taking action and interacting on behalf of the user.

5.4 Evaluation 2: Left, Right, and Gender – User Study to Understand How Inter-

action Traces Can Mitigate Human Biases

In addition to evaluating Lumos – the system, we conducted a crowd-sourced experiment

to understand how interaction traces help mitigate human biases during decision-making.

Our users performed two tasks in the domains of (1) politics and (2) movies. In the political

scenario, we curated a dataset of fictitious politicians in the U.S. state of Georgia and asked

participants to select a committee of 10 responsible for reviewing public opinion about the

recently passed Georgia House Bill 481 (Georgia HB481), banning abortion in the state

after 6 weeks. In this scenario, several types of bias may have impacted analysis, including

gender bias (i.e., bias favoring one gender over another), political party bias (i.e., voting

along political party lines, regardless of potential ideological alignment from candidates in

another party), age bias (i.e., preferential treatment of candidates based on age), and so on.

Participants in the experiment also completed a parallel task in the domain of movies: to
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select 10 representative movies from a dataset of similar size and composition. Note that,

regardless of domain, our goal was not to address overt biases (e.g., in the form of discrim-

ination); rather, we believe visualization can have an impact on increasing user awareness

of potential unconscious biases that may impact decision-making in critical ways.

Thus, in this task, we anticipated that participants’ decisions would be driven by id-

iosyncrasies of their individual preferences. For the given tasks, we utilized a lite version

of Lumos wherein we only allowed users to work with a scatterplot (no bar chart, strip plot,

and line chart), and dropped the ability to configure the target behavior (we fixed it to pro-

portional). Additionally, to support decision-making, we enabled users to click datapoints

to select them and add to their lists. Furthermore, we assessed four interface variations:

CTRL, SUM, RT, and RT+SUM. The CTRL interface served as the control system, which we

compared to variations that provided either real-time (RT) or summative (SUM) views of

the user’s interaction traces (or both, RT+SUM).

Our experiments yielded mixed results, offering support that interaction traces, partic-

ularly in a summative format, can lead to behavioral changes or increased awareness, but

not substantial changes to final decisions. Interestingly, we find that increased awareness of

unconscious biases may lead to amplification of individuals’ conscious, intentional biases.

For details, I refer the reader to the associated publication [25].

5.5 Limitations and Future Work

Lumos currently supports only a small set of visualization types; however, we chose them

to test across different aggregation types. Also, analytic behavior is modeled only from

interactions, which may not be a complete proxy for attention; in the future, one may con-

sider user gaze or other sources to more accurately approximate it. Lastly, Lumos models

analytic behavior by equally weighting all interactions; given users’ declining attention

span over time, we may incorporate interaction recency in the future.

Finally, interactions with aggregate visualizations (e.g., hovering on a bar in a bar chart)
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are currently considered as N equally weighted interactions of magnitude 1/N where N =

number of data points belonging to that element. This has variable impact on the metrics

due to different statistical tests used to compute the analytic behavior model (AD [111]) de-

pending on the attribute type (e.g., χ2 test for categorical attributes, Kolmogorov-Smirnov

test for numerical distributions). Future work can explore alternative computations for an-

alytic behavior models that may reflect a user’s attention and intentions more precisely.

5.6 Summary

In this chapter, I described a mixed-initiative system, Lumos, that facilitates a co-adaptive

guidance dialog between the user and the system. Lumos helps increase awareness of ex-

ploration biases during analysis, but additionally allowing users to customize the target

interaction behavior and receive contextual guidance. A user evaluation of Lumos revealed

that interaction traces can enhance user awareness of analysis behaviors in real-time, fos-

tering self-reflection and acknowledgment of users’ intentions. A second user evaluation

studied how interaction traces help mitigate human biases (e.g., age bias, gender bias)

during decision-making, (also) suggesting they can help promote conscious reflection on

decision-making strategies, but further studies were needed for conclusive results. These

results can have far-reaching implications, such as helping to mitigate biased decision-

making, supporting diversity goals (e.g., in hiring), and promoting transparency in analysis

processes. Lumos is available as open-source software at https://lumos-vis.github.io. For

details, I refer the reader to the associated publications [27, 25].
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CHAPTER 6

DESIGNING A MIXED-INITIATIVE, MULTIMODAL GUIDANCE SYSTEM

In this chapter, I describe a mixed-initiative system, BiasBuzz [7], that provides multimodal

guidance (combination of visual and haptic) to increase awareness of biased analytic behav-

iors during visual data analysis, partly achieving RG2: Design a mixed-initiative guidance

system, wherein the user and the system learn from and take initiative on behalf of each

other, co-adaptively steering the analytic process. This chapter is based on work published

at ACM CHI (Late Breaking Work) [7].

6.1 Motivation and Background

In chapter 5 (Lumos), I described how visually presenting interaction traces during analysis

(e.g., coloring visited data points darker than others) increased user awareness of their

analytic behaviors, yet sometimes led to confusion or went unnoticed. Essentially, we

believe presenting visual cues alone may be a passive form of guidance that also adds to

users’ cognitive load already engaged in visual data analysis. We hypothesized stronger

cues are needed in the user interface to promptly capture user attention to ‘bring them

back on track’ without significantly increasing cognitive load or hindering user experience.

So we asked: “How can we use alternate modalities as a stimulus to the existing visual

feedback, to strengthen and reinforce the overall guidance during analysis?”

In response, we reviewed alternative modalities such as natural language [26] and am-

bient display media (light, airflow, sound) [242] and selected haptic[243] as our additional

cue. Haptics refers to the science and technology involving the sense of touch, partic-

ularly focusing on the creation and study of tactile sensations and feedback [244, 243].

Haptic devices have been used in many applications such as remote systems for visually

impaired people [245], anxiety and depression treatment [246], assistive communication
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technologies for children with autism [247], wrist-mounted devices for alerting users of

warnings in a cybersecurity context [248], affecting the state of mind of users watching

the news [249], and gaming [250, 251]. Akamatsu et al. [250] showed that with a haptic

mouse, users move faster and click targets within a wider area than users with a typical

mouse. Kyung et al. [252] studied how a unique mouse with “force feedback” was more

effective than a normal mouse at helping users recognize shapes in a task. Terry et al. [253]

found that haptic mice reduce the response time spent on visual tasks on a computer.

Han et al. [254] used an off-the-shelf haptic mouse for a guidance study using visualization

and participants who used the haptic features performed better than users who did not.

For this work, we explored how a combination of visual guidance and haptic feedback

can help users be even more aware of their analytic behavior during a visual data analysis

task. In particular, we built BiasBuzz, as described next.

I

BiasBuzz

A

B

C

D

E

F

G

H

Figure 6.1: An existing visual data analysis tool, Lumos [27] (A)-(H), enhanced by wiring
it to a gaming mouse [255] (I) to increase awareness of exploration biases. This new en-
hanced system (BiasBuzz) provisions visual guidance by highlighting a user’s prior interac-
tions (blue) and deviations from expected behavior (red, green) along with haptic feedback
from a gaming mouse when there is significant deviation.
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6.2 BiasBuzz

BiasBuzz is an extension of an existing visual data analysis system, Lumos [27], by inter-

facing it with a mouse capable of generating haptic feedback. This enhanced system tracks

user interactions with data, measures exploration biases, and communicates them to the

user in the form of mouse vibrations (haptic feedback) and simultaneous display of con-

textual information in the user interface (visual guidance). This combination of visual and

haptic elements seeks to create a more engaging experience for users during data analysis.

6.2.1 Haptic Feedback: Design Choices and Considerations

To design a visual data analysis system integrating visual and haptic feedback, we identified

key considerations and design choices, illustrated through a scenario. Consider a visual

data analysis tool (e.g., Lumos [27]) where users upload a tabular dataset and perform

analysis by creating different visualizations and applying relevant filters. To help the user

not exhibit exploration bias, i.e., emphasize certain attributes and records more than others,

the system tracks the user’s interactions and visually presents any bias back to the user,

in real-time. This tool achieves this by (1) highlighting already visited data attributes and

records and (2) presenting the deviation of user’s interaction pattern from the underlying

distribution, computed as the AD metric by Wall et al. [111].

Recall from chapter 5 (Lumos), that the AD metric characterizes how a user’s interac-

tive behavior deviates from expected behavior and ranges from 0 (no deviation, no bias) to

1 (high deviation, high bias). By default, the system chooses a proportional baseline of

expected behavior, wherein interactions with any given datapoint are equally likely and also

reflecting the true underlying distributions of data attributes. For instance, if a user inter-

acts primarily with ‘Drama’ movies among a dataset of movies that contains predominantly

‘Action’ movies, the AD metric for the Genre attribute will be high (more emphasis). If the

user instead spent more time interacting with ‘Drama’ movies, proportional to the distribu-
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tions in the dataset, the AD metric value for Drama would be low (less emphasis).

Now, we intend for the feedback in the tool to “guide” the user to exhibit less explo-

ration biases in their interactions than they did prior to the feedback. This means discourag-

ing “biased” exploration methods and reinforcing “unbiased” exploration methods without

highlighting specific data points in the interface. Consider this tool is connected to a haptic-

enabled gaming mouse, such as the SteelSeries 710 [255], that appropriately vibrates from

time to time to capture the user’s attention. There are several considerations in designing

the timing, duration, intensity, and pattern of the resultant vibrations, as described next.

Vibration Timing: When to vibrate? We considered triggering a mouse vibration every

time exploration bias is detected for an attribute. The AD metric [111], used to quantify

the deviation of user’s interaction pattern of an attribute from its underlying distribution

ranges from [0, 1], where 0 implies less deviation and 1 implies more deviation. Based on

our own testing and pilot studies, we set a threshold of AD=0.7 above which an attribute is

considered to be interacted with bias. This can still result in multiple vibrations, depending

on how many attributes have AD values above the threshold. Thus, we decided to allow the

user to select the attributes they wish to track and only consider this subset for vibration.

Vibration Duration and Cooldown Period: When should the vibration end? Gaming

mice have vibration motors built into them to provide haptic feedback during gameplay.

These motors often generate heat when they are in use for extended periods or at high

intensity. To prevent these motors from overheating, as a protective mechanism, these mice

cooldown for a short time period before vibrating again. One of the implications of this

behavior in our visual data analysis scenario is that if the user interacts twice in quick

succession, and both times bias is detected, the mouse would still only vibrate once. Only

after the cooldown period, if the detected bias is still active, will the mouse vibrate again.

Between this timeframe, the vibrations can be considered ‘lost’, necessitating an alternative

modality (e.g., visual) to communicate the same information.

111



Vibration Intensity: How strongly to vibrate? Gaming mice often enable customiza-

tion of the vibration intensity (or strength) and pattern during gameplay. In our visual data

analysis scenario, we can map intensity to the amount of exploration bias (e.g., less bias is

‘z’ whereas more bias is ‘Z’), where ‘z’ and ‘Z’ represent one vibration pulse. Dur-

ing our own testing and pilot studies, we noticed less variance between different vibration

intensities, making it difficult for users to differentiate between them. Thus, we decided to

set the default vibration intensity at the highest level (‘Z’).

Vibration Pattern: How to vibrate? Gaming mice often enable customization of the vi-

bration pattern. To design our visual data analysis scenario, we reviewed the design space

of haptics [256, 257, 258] and considered mapping different vibration patterns to differ-

ent attributes (that are exhibiting bias). For example, given a dataset about movies, ‘Z’

represents one vibration pulse. A biased Genre attribute would make the mouse vibrate as

‘ZZ..ZZ..ZZ’, wherein the mouse vibrates for a short duration two times every time

bias is detected in the Genre attribute. Also in this example, a biased Budget attribute may

vibrate as ‘ZZZ.ZZZ.ZZZ’, wherein the mouse vibrates three times every time bias is

detected in the Budget attribute.

In summary, our own testing and pilot studies, we found that keeping track of different

vibration patterns can become confusing for the user. Thus, we set the default vibration

pattern to a single, long pulse set to the highest strength and show additional contextual

information, e.g., the attribute(s) name and its AD value, visually in the user interface (UI).

Note that a gaming mouse generally does not have its own display to show this information,

hence we have chosen to utilize the tool’s UI.

6.2.2 User Interface

We enhanced an existing, open-source visual data analysis tool, Lumos [27] (Figure 6.1).

Lumos enables users to load a tabular dataset (A), inspect its attributes and corresponding
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One or more 
Tracked Attributes

No Tracked 
Attributes

Attribute (Un)TrackingVisualization Interaction

Click or hover 
a data point

Mouse Vibrates
(Haptic)

Haptic Feedback and Visual Icon Alerts

No Haptic Feedback or 
Visual Icon Alerts

Alert Icon Pulses in 
the User Interface

(Visual)

Mean 
AD > 0.7  Yes 

 No 

Select one or more 
attributes to (un)track

Figure 6.2: The interaction sequence diagram to trigger haptic feedback and visual icon
alerts in BiasBuzz. When a user interacts with a datapoint, and tracks one or more attributes
(for bias mitigation), and if the mean AD metric value for these tracked attributes is greater
than a predetermined threshold of 0.7, the mouse vibrates and the corresponding visual alert
icons pulse in the UI. In all other scenarios, there is no haptic feedback or visual guidance.

data distributions (B), apply filter criteria (D), and assign attributes to visual encodings (C)

to eventually create visualizations (E) and inspect raw data records (F). Lumos tracks users’

interactions with data attributes and records and presents them back to the user in the form

of visual highlights (e.g., by coloring visited data points in shades of blue (E)). Lumos

also determines if the user has over- or underemphasized certain attributes and records and

by how much by computing the AD (Attribute Distribution) metric [111] (G). The AD

metric values lie between 0 and 1; higher the AD metric, higher the deviation between the

user’s interaction with a certain category/quantile of data attribute and its underlying data

distribution, implying higher exploration bias. Lastly, the Selections panel (H) shows the

list of selected data records (movies).

We used a SteelSeries 710 gaming mouse that can be made to vibrate programmati-

cally [255] (I). We chose this specific model because of its diverse vibration-related capa-

bilities (e.g., timing, duration, intensity, pattern), ease of setup via an extensive API and

documentation [255], and prior usage in a research study related to visualization [254]. We
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made the following enhancements to the Lumos UI to orchestrate the interactions with the

haptic mouse, which is illustrated in Figure 6.2.

(Un)Tracking Attributes. Not all attributes from a dataset might be important or relevant

to the user’s task (e.g., the Age attribute is irrelevant if the user’s task is to ensure Gender

diversity). Thus, we added the ability to “track” specific attributes, and only communicated

AD bias for these “tracked” attributes. Lumos already supports the ability to bookmark one

or more attributes, and we repurposed this to instead track one or more attributes (G). When

a user tracks one attribute, that attribute’s AD metric value is compared to a preconfigured

high-bias threshold=0.7, on a scale from 0 to 1. If the value is greater than the thresh-

old, exploration bias is detected and reported. When a user tracks multiple attributes, the

mean of the AD metric values of the tracked attributes is computed and compared with the

threshold (0.7). If the value is greater than the threshold, exploration bias is reported.

Haptic Mouse Vibrations and Visual Icon Alerts. To report exploration bias(es) for

the tracked attribute(s), we provided two modes: haptic mouse vibrations and visual icon

alerts. Whenever exploration bias is detected, the mouse vibrates once for a split second.

Note that our haptic mouse does not come with any kind of display; it just vibrates and

lights up. Hence, it can only convey when there is bias but not why or who is responsible

for it. Transmitting this information via Morse (or equivalent) code is out of scope for this

study. Thus, to put the vibration into context, it is very important for the Lumos visual

interface to show the corresponding attribute(s) and the AD metric values. To achieve this,

we added visual alert icons next to each tracked attribute in the Distribution panel (G).

Whenever the mouse vibrates, corresponding visual alert icons start flashing in a pulse

animation (i.e., continuously increase and decrease in size), connecting the vibration to

the corresponding attribute. When a user tracks multiple attributes and the mouse vibrates

(i.e., when the mean AD metric value is greater than the threshold), the mouse also vibrates

but the visual alert icon starts flashing only for those attributes whose individual AD met-

114



ric value is greater than the threshold (i.e., who are, in a way, responsible for the overall

exploration bias). This was a design choice to help the user formulate concrete next step

interactions with specific attributes (e.g., the ones with the highest bias).

(Un)Muting Attributes. We anticipated users wanting to stop experiencing the mouse

vibrations either temporarily or permanently because of a personal preference or feeling of

distraction. Thus, we enabled users to toggle the tracking of an attribute’s AD metric and

associated vibrations by clicking its corresponding visual alert icon.

6.3 Evaluation

We conducted a formative study to understand how visual and haptic feedback can together

help increase user awareness of analytic behaviors during visual data analysis.

6.3.1 Participants and Procedure

Participants. We recruited nine participants enrolled in a bachelors degree program in a

computing or related field at a public university in the United States. We screened these

participants based on their self-reported visualization literacy (≥3/5). Demographically,

our participants comprised seven men and two women in the age range of 21 to 32 years.

Dataset. 709 movies with 9 attributes: Production Budget (�), Worldwide Gross (�),

Running Time (�), IMDB Rating (�), Rotten Tomatoes Rating (�), Release Year (�),

Content Rating (~), Genre (~), and Creative Type (~).

Task. We tasked participants to:

Create a list of 10 movies that you would like to watch. These movies should reflect the underlying

dataset as it relates to Release Year, Genre, and Content rating. Feel free to use the tracking feature

to help you achieve your goal.
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Study Session. We conducted the study in-person in a controlled lab environment. After

providing consent, participants saw a video tutorial that demonstrated the features of the

visual data analysis tool and the gaming mouse (5 minutes). Participants then performed

a practice task on a dataset of cars to get acquainted with the study interfaces (5 minutes)

before starting the actual task on the dataset of movies (20 minutes). After the task, par-

ticipants provided feedback via a post-study questionnaire and a short debriefing interview

(5 minutes). Each study session lasted about 60 minutes for which we compensated each

participant with a $15 gift card. We encouraged participants to think aloud during this task

recorded the screen and audio for subsequent qualitative analysis.

6.3.2 Results

6.3.2.1 Qualitative Feedback

For qualitative analysis, We transcribed participant audio recordings, divided the resultant

transcripts into smaller sections, and two coders applied open coding [185].

The overall feedback was mixed. In the post-study questionnaire, participants scored

their perceived utility of key aspects of the study on a Likert scale from 1 (“not useful at

all”) to 5 (“very useful”). All aspects including visual icon alerts (µ = 2.56), haptic mouse

vibrations (µ = 3.33), the ability to track attributes (µ = 3.56), and the ability to mute

attributes (µ = 2.67) received mixed scores. Findings from the qualitative analysis also

resonated with the aforementioned sentiment, as described next.

P1-P9 refer to the nine participants. P1, P5, P9 were positive about both the haptic

mouse and the visual icon alerts. P5 said, “the mouse vibrations and visual alerts are [both]

very good at drawing your attention towards data points you’ve been missing out on.” P1

said, “I think [the vibrations] reminded me of my goal, so they changed my attention to

focus on the tracked attributes.” P1 also noted they “didn’t notice the visual attribute

alerts as much compared to the haptic feedback, but [they] like that it shows red when

[they] haven’t looked at data proportionate to that attribute.”
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On the contrary, P2, P3, P6 disliked both. P2 said, “I barely spent any time [with

the Distribution Panel] near the beginning of the task and I already feel punished [due to

high AD values].” They projected “[they] might get immune to it eventually and discard

it as a nuisance rather than something that’s giving helpful information.” P2 said, “I’d

prefer a post-facto email with suggestions rather than instant haptic punishments.” P6 did

not understand the mouse vibrations or visual icon alerts very well. According to them,

“There was [high] latency between the event and the vibration so [they] had a hard time

linking the vibration to its meaning.” Because “[they] did not figure out how the mouse

vibration worked [they] did not understand the [visual] icon [alerts] either.” P3 were more

hopeful, suggesting “the [haptic and visual alerts for attributes] would be more useful if

they were more relevant to the way I was looking through the dataset [instead of comparing

with the underlying data distribution as the baseline],” suggesting alternate baselines to be

employed [27]. These sentiments indicate a strong rejection of the mouse’s vibrations.

P8 did not like the mouse vibrations but liked the visual icon alerts. They said, “[the

visual icon alerts] affected my data exploration because it made me want to avoid that

datapoint that it vibrated on.” P4 and P7 liked the mouse vibrations but not the visual icon

alerts. On the mouse vibrations, P4 said, “There was one time [the vibrations] went off, and

I was like ‘ok we need to look at action thriller’ and another time I was like ‘hey you need to

get a drama’.” P7 said, “When I felt the vibration, I switched my focus to the [Distribution]

panel and get some additional information.” On the visual icon alerts, P4 said, “I feel

like because the window was really small I had to scroll to find exactly what attribute was

setting it off.” This issue can potentially be mitigated with interface enhancements. P7 said,

“I think the problem I had is that I am not familiar with the [visual icon alert] meaning. I

thought the red icon indicates I am making some errors or mistakes, so I am thinking to ‘fix’

it.” All of these observations demonstrate the wide range of reactions to our enhancements.
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6.3.2.2 Quantitative Analysis

Tracked Attributes. Participants tracked attributes for a total of 40 times (µ=4.44, η=4,

σ=1.07, max=7, min=3). Genre was tracked the most (12 times) and IMDB Rating, World-

wide Gross, and Running Time were tracked the least (once). Participants scored (µ=3.55)

the ability to track attributes relatively higher than other features like visual icon alerts,

haptic mouse vibrations, and the ability to mute attributes. While P2 said, “[the tracking]

is a necessary piece for the whole design,” P5 said, “[the tracking] helped me notice the

parts where my focus was deviating from expectation.”

Mouse Vibrations. The mouse vibrated a total of 142 times across all nine participants

(µ=15.77, σ=8.72, max=36, min=3). Of these, Genre was above the exploration bias

threshold (= 0.7) the most and vibrated 114 times. Worldwide Gross, Rotten Tomatoes

Rating, Running Time, and IMDB Rating were all tracked by participants at one point or

another, but none of these attributes were above the bias threshold to trigger vibrations.

Many participants had interesting things to say about the mouse vibrations. P1 said, “The

only useful part about the haptic feedback is that it reminded me I hadn’t reached my goal

of selecting and viewing a proportionate amount of different movies with respect to the

specific attributes I was tracking.” P4 “could tell towards the end that the vibration is

indicating that you need to work on something.”

Mouse Muteness. Participants muted the vibrations for a total of 56 times (µ=15.77,

σ=9.40, max=32, min=0). Genre was muted the most (41 times). P8 said “There are

some attributes that I was not considering, so it was great to be able to mute these specific

attributes.” P1 muted an attribute only once, and they did this because “the haptic feedback

wasn’t too distracting, so I didn’t see the need to mute the alert for specific attributes.

Exploration Bias Mitigation: Did the AD metric values decrease? We plotted the total

number of vibrations for each of the three attributes (Genre, Content Rating, Release Year)
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against their corresponding final AD values. We observed no correlation suggesting that

the vibrations did not reduce the AD values. P3, even though they experienced the most

number of vibrations (n=36), said they did not feel they needed the vibrations to do well in

the task. They said, “[Vibration] definitely has a place for some tasks, but I didn’t need it

all that much for this one.” Similarly, P9 experienced the least number of vibrations (n=3)

and found them less useful, noting, “[Vibrations] didn’t affect my data exploration process

because I was focused on the task of creating a list of 10 movies more than anything.”

Temporal Analysis: Did the vibrations nudge users to respond by interacting differ-

ently? Even though there was no overall decrease in AD values, there were instances

when participants actually changed their subsequent interaction behavior after the mouse

vibrated, either temporarily or permanently. For instance, P4 experienced several vibrations

towards the end of their session and the AD value of Content Rating dropped in tandem

with those vibrations. They said, “[Vibrations] helped me kinda narrow down genres to-

ward the distribution.” Although the AD value of Genre did not drop significantly, their

comment suggested that users can be made more aware and reflect on their choices during

the task. Notably, P2 experienced several vibrations due to Content Rating, but ended-up

muting it, because of which its AD value remained high throughout the task.

6.3.3 Discussion

Haptic vibrations can take some time to get used to. Unlike games, data analysis sys-

tems generally utilize a single ‘visual’ modality. Thus, it will take time for other modalities

to gain acceptance. For instance, P4 said they “didn’t notice [the vibrations] at first, but

after some repetition, got used to looking at the distributions after feeling the vibrations.”

P9 “wondered if the mouse vibrating was a technical issue.” P8 “found [the mouse vibra-

tions] were very clear but [were] just not sure why the mouse was vibrating.” P7 even said,

“If you asked me to do it again (the task with the mouse), I could get more used to it.”
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Haptic vibrations can be a positive stimulant to aid analysis. Many participants were

positively stimulated in one way or another directly after the mouse vibrated, lending cred-

ibility to the practicality of offering haptic modality as a more “aggressive”, “active” form

of guidance in visual data analysis. For example, the vibrations acted as a reminder of

the analysis goal (P1), realization of missed out data points (P5) and attributes (P7), all of

which nudged them to change subsequent interaction strategy.

Haptic vibrations can also be a source of distraction during analysis. While the mouse

achieved the desired effect of increased analytic awareness for some participants, there

were multiple instances where it negatively affected the participant’s analytic goals, which

is undesirable. P7 said, “It encouraged me to explore different movie attributes instead of

the ones I am interested in.” P8 said, “It affected my data exploration because it made me

want to avoid that datapoint that it vibrated on. Am I supposed to avoid this datapoint?”

6.4 Limitations and Future Work

The capabilities of the SteelSeries 710 mouse limited this study. As a common off-the-

shelf mouse, its vibration intensity was not very high and due to its cooldown requirement,

it could not vibrate for long time periods. As a result, even though this mouse supported dif-

ferent vibration patterns, we could not exploit this to different aspects of the user interface

(e.g., unique pattern per attribute or a certain level of bias). Studying these via a custom-

built mouse that is capable of stronger vibrations, more vibrations in rapid succession, and

different types of vibrations, is future work. Furthermore, exploring additional modali-

ties such as natural language [26], ambient display media (light, airflow, sound) [242], or

squeeze-haptics [259] to communicate appropriate guidance is also future work.
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6.5 Summary

In this chapter, I described a mixed-initiative system that provides multimodal guidance to

increase user awareness of biased analytic behaviors during visual data analysis. In partic-

ular, we wired a gaming mouse to an existing visual data analysis tool (Lumos, described

in chapter 5); we made this mouse vibrate and reinforce the tool’s existing ability to de-

tect and visually communicate exploration biases exhibited by the user. A formative study

with nine users revealed that the dual guidance modality of visual and haptic feedback can

sometimes increase user awareness of biased analytic behaviors, but the mouse vibrations

can also be distracting and disturbing, putting into context the design of future multimodal

guidance-enriched user interfaces for visual data analysis. For details, I refer the reader to

the associated publication [7].
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CHAPTER 7

DESIGN SPACE FOR COMMUNICATING ANALYTIC PROVENANCE

In this chapter, I describe a design space for communicating analytic provenance, by uti-

lizing provenance as an attribute during analysis, mapping it to visual encodings and data

transformations. Because provenance information is often the basis for provisioning guid-

ance, this design space sets the foundation for the guidance design space (described in

chapter 8), partly achieving RG3: Establish a design space for guidance communication

during analysis. This chapter is based on work currently under review [11] and also sets

the foundation for the design space for guidance communication, described in chapter 8.

7.1 Motivation and Background

Analytic provenance records the history of analytical actions, showing how data was ob-

tained, transformed, and analyzed. For data visualization, analytic provenance also tracks

how users interact with visualizations as a representation of their reasoning process [52].

A frequent use of provenance is to help users recall steps taken during analysis [53]. While

effective for forensic purposes, other tools have explored how to show provenance to users

during analysis. For example, existing systems [27, 84, 85] leave visual traces of the user’s

interactions to encourage them to pause and reflect on their behavior, potentially influenc-

ing subsequent analysis. However, analytic questions such as “How many data points has

the user interacted with so far?” or “Which were the first attributes that the user interacted

with?” are often only answerable post-analysis (after analyzing the provenance logs). In

the moment, it is impractical for the user to manually count the interaction traces one-by-

one or outright remember their interaction history in detail, which makes such iterative

reflection during analysis difficult [71, 72]. Thus, our main research question asks: “How

can we make analytic provenance available to the user during visual data analysis?” In re-
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Figure 7.1: Illustration of two provenance attributes, frequency and recency, modeled for
each dataset attribute (A1–An) and record (R1–Rm), on a 0 (low) to 1 (high) range. Con-
sider a user creates a scatterplot visualization of Title (A1) × Genre (A2) and then clicks
two datapoints one after another R1 → R2, indicating interactions with two attributes and
two records. Regarding data attributes, Title (A1) and Genre (A2) both receive a frequency
score of 1.0 (each interacted once, hence maximum score), while other attributes score 0.0;
for recency, Genre (A2) (most recently interacted) scores 1.0 and Title (A2) scores 0.5,
while other attributes score 0.0. Likewise, regarding data records, R1 and R2 both score
1.0 on frequency; for recency, R2 (most recently interacted) scores 1.0 and R2 scores 0.5,
while other records score 0.0. These scores are derived by evenly spacing the interactions
between 0 and 1, based on their count and order of occurrence in the interaction history.

sponse, we investigate two key components: (1) how to model provenance during analysis

and (2) how to present provenance back to the user.

7.2 Design Space: Utilizing Provenance as an Attribute

In this section, we describe how we (a) track user interactions with data attributes and

records to (b) model provenance attributes and later (c) visualize them during analysis.
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7.2.1 Tracking Provenance: Which User Interactions to Log?

In a typical visual data analysis system, users analyze their dataset in various ways: they can

inspect an attribute’s summary statistics (e.g., via distribution plots), examine individual

data records (e.g., from a data table), apply data transformations (e.g., filter and sort),

and create visualizations (e.g., by mapping attributes to visual encodings). To achieve our

overarching goal of tracking, modeling, and visualizing provenance during analysis, we

track a subset of relevant user interactions and map them to an individual data attribute or

record. In this work, we track interactions with a data attribute when a user inspects its

summary profile, maps it to a visual encoding, or uses it to filter and sort data records; we

track interactions with a data record when a user hovers on a visualization mark (e.g., a

point in a scatterplot) or a row in the data table.

7.2.2 Modeling Provenance Attributes: Frequency, Recency

After tracking user interactions, accurately modeling provenance attributes is crucial for

understanding analytic behaviors. To model provenance, we generally follow the method-

ology employed by Lumos [27]. For unit visualizations, we map one interaction with an

attribute or record as +1 unit of interaction. For aggregate visualizations that show a single

value computed from multiple data records (e.g., a bar in a bar chart with an aggregation

function such as mean or sum), we map one interaction with an aggregated entity as +1/N

units of interaction for each of the N data records that form the hovered entity. For exam-

ple, consider a bar chart showing average IMDB Rating for different movie Genres; if the

user hovers on the bar Genre=“Action” that represents five action movies (whose mean is

encoded as the bar’s height), we log each action movie as having +0.2 units of interaction.

We also log the timestamp (as milliseconds since epoch) of each interaction. For unit

visualizations, we simply map the interaction timestamp to the corresponding attribute or

record. For aggregate visualizations, we log the same interaction timestamp for all data

records that form the aggregated entity (i.e., many records will have the same timestamp).
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From the interaction units and timestamps, we compute two metrics that we refer to as

provenance attributes: frequency and recency. We chose to focus on these metrics as they

are both relevant to provenance tracking and have been commonly used in visualization

research and practice [9, 105, 27, 25, 110]. Figure 7.1 illustrates sample frequency and

recency computations, which are described in the following paragraphs.

Frequency. This provenance attribute computes a frequency score fx normalized from

zero to one, for each data attribute:

fx =
nx

maxNi=1 ni

where nx is the total number of interactions with a data attribute x and maxNi=1 ni is the

maximum number of interactions from among all N data attributes. A score of zero implies

no interactions (or zero focus) and a score of one implies the most number of interactions

(or maximum focus). Like data attributes, we also compute fx for data records.

Recency. This provenance attribute computes a recency score rx normalized from zero to

one, for each data attribute:

rx =
rankN(max(tx))∑N

i=1 ni

where max(tx) is the timestamp of the most recent interaction with a data attribute x,

rankN(max(tx)) is its serial order in the overall sequence of interactions across all N data

attributes (i.e., the entire analysis history), and
∑N

i=1 ni is the total number of interactions

across all N data attributes. A score of zero implies no interactions (or zero focus) and a

score of one corresponds to the most recent interaction (or focus). Like data attributes, we

also compute rx for data records.
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Design Space of Provenance Attribute Glyphs for various Marks, Visual Encodings, and Data Transformations
Domain: All provenance attribute values are normalized from 0 and 1. Range: Depends on the mapped visual encoding(s).
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Figure 7.2: Design space of provenance attribute glyphs (A–S) to visualize the values
of provenance attributes (normalized from 0 to 1) for data attributes (or records) across
different marks (point, text, bar), visual encodings (x, y, column, row, fill, fillOpacity,
stroke, strokeOpacity, strokeWidth, size, shape, tooltip, annotation, text), and data
transformations (sort, filter), including alternate configurations (e.g., –x where the range
is reversed or descending sort order) and combinations (e.g., x + y + fill + size + sort).
For instance, for mark=bar and encoding=fill (O): “Title” has the largest value (darkest
bar) followed by “Worldwide Gross” , “Production Budget” , and “Genre” ; “id” ,
“Release Year” , and “Running Time” have the smallest values (lightest bars). Notice
the change to the attribute sort order for the right side of the design space (P–S), compared
to the unsorted attributes on the left (A–O).

7.2.3 Visualizing & Interacting with Provenance during Analysis

Our main goals were to enable users to access the provenance of specific attributes or

records and also obtain a visual provenance overview of the entire dataset during analy-

sis. In response, we designed small glyphs called “provenance attribute glyphs”, which

comprise a mark type (e.g., point ) and one or more visual encodings (e.g., fill ) that en-

code the provenance attribute values (e.g., where darker glyphs imply higher values).

These glyphs can represent data records within visualizations (e.g., points in a scatterplot),

can be displayed alongside data attributes (e.g., in the attribute panel), and can integrate

well with sorting and filtering operations. These glyphs can reveal interesting provenance

patterns, e.g., if there are more dark than light glyphs (or vice versa), then the user has
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interacted disproportionately. Figure 7.2 summarizes this design space (for attributes).

7.2.3.1 Marks and Visual Encodings

Our design space covers three mark types: point , bar , and text (0.5). Other mark types

such as line and area require at least two values (a start and an end), which make them

unsuitable for encoding, and hence are not considered. Each mark type encodes a single

value across one or more visual encodings, as described next.

Our design space covers 13 encodings [260]: x, y, column, row, fill, fillOpacity, stroke,

strokeOpacity, strokeWidth, size, shape, tooltip, text, and annotation; annotation is a special

encoding that adds an extra text mark displaying the encoded value next to the visualization

mark, unlike the text encoding, that only displays the text (as the visual mark itself).

For instance, Figure 7.2O (mark=bar, encoding=fill) shows that “Title” has the largest

value (darkest bar ), whereas “id”, “Release Year”, and “Running Time” have the smallest

values (lightest bar ). Figure 7.2I (mark=point and encoding=strokeWidth) shows the

glyph for the largest value (thick stroke) and for the smallest value (thin stroke).

7.2.3.2 Data Transformations

In addition to visualizing provenance attributes (marks and encodings), we also enable

users to transform (filter and sort) their data by the provenance attributes. This functionality

was inspired by DataPilot [4], which similarly lets users sort and filter their data attributes

and records based on their quality and usage characteristics.

Sort displays the data attributes or records in order of the encoded provenance attributes.

For example, Figure 7.2P shows an active descending –sort by frequency, visualized as

mark=point and encoding=x, illustrating that “Title” had the most interactions followed

by “Worldwide Gross”, “Production Budget”, and so on. Notice the change to the attribute

sort order for the right side of the design space (Figure 7.2P–S), compared to the unsorted
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attributes on the left (Figure 7.2A–O).

Filter displays a subset of data attributes or records based on the criteria provided by

the user (e.g., the encoded entity values). For example, Figure 7.2Q shows an active filter

for frequency greater than or equal to 0.5, emphasized by mark=point, encoding=x, and

a descending –sort (also by frequency), resulting in four attributes that match the filter

(“Title”, “Worldwide Gross”, “Production Budget”, “Genre”).

7.2.3.3 Configurations and Combinations

Our design space enables various configurations and combinations of marks, encodings,

and data transformations, affording user agency and control, and promoting accessibility,

like the different strategies to debug NL2SQL workflows, as undertaken by the participants

of Debug-It-Yourself [26] (chapter 4).

Configurations. Users can configure the range of the encoding scale (e.g., for size, high

values map to bigger glyphs or vice versa) or sort directions (i.e., ascending or descending).

For example, all data attributes to the right side of the design space in Figure 7.2P–S are

–sorted by frequency in the descending order (which means attributes at the top have been

used more often in the interface). However, P maps the glyphs to x whereas R maps them to

–x (reverse). Such configurability can support different user preferences and use cases, e.g.,

visited points could become smaller, nudging users to interact with other points (increase

coverage); alternatively, they could become bigger, helping users quickly spot them.

Combinations. Our design space does not limit the user to one configuration at a time.

Users can simultaneously utilize one or more visual encoding assignments, as well as filter

and sort criteria to realize a wide variety of glyph combinations. For example, Figure 7.2S

shows a combination of x, y, fill, size, and sort. Combinations can help reinforce certain

interaction patterns and also help tools ship with smart defaults to serve a wider audience,
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e.g., using both fill and size can support both colorblind and non-colorblind users, similar

to how figures in articles are often colored but also hatched.

7.3 ProvenanceLens

To study the utility and usage characteristics for provenance attributes during visual data

analysis, we developed a system prototype, ProvenanceLens, that allows users to map

provenance to visual encodings and data transformations; essentially, users can now in-

teract with provenance in the same way as regular attributes.

7.3.1 User Interface

We developed a system (Figure 7.3) wherein users can utilize provenance attributes to

perform visual data analysis (e.g., inspect a dataset, create visualizations, and apply trans-

formations) and also answer questions about their provenance. It comprises seven views:

A Data Attributes. In this view, users upload and configure the dataset (2) and see the

underlying attributes (or features or columns). Hovering on the information icon � shows

the attribute’s definition in a tooltip. Clicking on the expand icon � opens a detailed view

with a distribution plot of the attribute’s values: an area curve for numerical attributes

and a column chart for categorical attributes, both of which show percentage counts corre-

sponding to the attribute quantiles and categories, respectively. Users can sort and filter the

attributes using the recency and/or frequency provenance attributes.

B Mark. This view includes a dropdown to configure the mark type for the visualization.

Users can select one of point, bar, line, area, or text to begin a visualization specification.

C Encodings. This view shows the visual encoding channels. Users select or drag one or

more attributes (data and/or provenance) to one of x, y, fill, fillOpacity, stroke, strokeOpac-

ity, strokeWidth, shape, row, column, tooltip, and/or text to complete a visualization spec-
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Figure 7.3: The ProvenanceLens user interface consisting of seven views: A the Data
Attributes view shows the attributes and enables transformation (e.g., sort, filter); B the
Marks and C Encodings views specify the visualization; D the Visualization view ren-
ders the specified visualization and supports filtering of data records; E the Data Records
view supports review and transformation (sort) of the data records shown in the visualiza-
tion; F the Provenance Attributes view lists the recency and frequency attributes; and G

the Tasks view shows the task instructions and questions, and tracks the user’s progress.

ification. An additional encoding, annotation, adds a new annotation displaying the value

of the encoded entity next to the selected mark.

D Visualization. This view renders an interactive visualization based on the selected

mark type and activated visual encodings in the “Encodings” view. It also includes a “Fil-

ter” drop-zone to filter out data points by attributes (data and/or provenance). A numerical

attribute displays a range slider and a categorical attribute displays a multiselect dropdown.

E Data Records. This view shows the data bound in the visualization as a paginated data

table. If the user hovers on a datapoint in a unit visualization (e.g., a scatterplot), this table

filters to only show that data record whereas if the user hovers on an entity in an aggregate

visualization (e.g., a bar showing the mean value), this table filters to show all data records

belonging to the hovered entity (e.g., the bar).
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F Provenance Attributes. This view shows the two provenance attributes: frequency

and recency. Like data attributes, users can select or drag these provenance attributes and

drop them to the sort and/or filter drop zones in the “Attribute View”, the encoding channels

in the “Encodings” view, the filter drop zone in the “Visualization” view, or the sort drop

zone in the “Data Records” view.

G Tasks. This view has six tabs, one for each task (T1–T6), allowing users to access

their task instructions, track their progress, and answer questions via integrated forms.

Configurations. ProvenanceLens can be programmatically configured into three modes:

(1) edit-only, where provenance is tracked and presented back to the user in real-time, (2)

view-only, where existing provenance is imported into ProvenanceLens without real-time

tracking, and (3) hybrid, where provenance is imported, and real-time tracking is enabled.

7.3.2 Example Scenarios

We present two usage scenarios on how ProvenanceLens can enhance visual data analysis

for real-time provenance tracking as well as post-analysis review of a user’s provenance.

Real-time Provenance Tracking. Assume Mark works for a movie production company

and must determine what kinds of movies to make next. They upload the dataset of movies

in ProvenanceLens (configured in its edit-only mode, i.e. real-time provenance tracking)

and begin exploring (by specifying different visualizations, applying relevant filters, and

hovering on certain movies). After taking a short break, they wish to revisit their most

recently hovered movie, so they create a visualization with a point mark type and map

the recency provenance attribute to the x encoding. They immediately find their desired

movie (with the highest recency score) at the horizontal axis’ rightmost-end. Had they

mapped recency to another encoding such as fill or size, it may have taken them some time

to accurately determine the darkest or biggest point.
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Upon further inspection of their focus on different movies, Mark noticed they have in-

teracted with some movies multiple times and not considered a lot of other movies (i.e.,

they exhibited less exploration coverage). Mark wants to change this analytic behavior,

and thus starts visualizing traces of their interactions in real-time. Because they are color-

blind, they avoid the fill, stroke, fillOpacity, and strokeOpacity encodings and choose size

to encode the recency provenance attribute. They can now track visited points using their

bigger size and continue exploring. However, because visited points get bigger, they are

getting drawn to the same points even more; thus, they reverse the size range to make the

visited points smaller instead. Happy with this configuration, they continue exploring and

eventually submit their analysis report to their manager.

Post-Analysis Provenance Review/Audit. In addition to real-time provenance tracking,

ProvenanceLens can also import an existing log of a user’s provenance to facilitate col-

laboration (e.g., continuing a colleague’s analysis), auditing (e.g., inspecting a colleague’s

analysis), or post-hoc analysis (e.g., reviewing user study logs [92, 261]).

Assume Anya is Mark’s manager and is reviewing their previous analysis. They ex-

press surprise at Mark’s recommendation to make a Drama movie next. Wanting to review

Mark’s analysis, Anya imports Mark’s provenance (exported from ProvenanceLens) into

ProvenanceLens. They configure ProvenanceLens in its view-only mode, i.e., no real-time

provenance tracking, to view and interact with Mark’s analysis. They make a bar chart with

“Genre” on x and the sum of frequency on y. This visualization shows Mark’s total focus

across movie genres. Anya notices that certain bars corresponding to Action and Adventure

movies are really short (i.e., of low frequency). They ask Mark to review those genres be-

fore making a final recommendation. In this way, Anya was not only able to review Mark’s

report but also their analysis process, thereby supporting enhanced decision-making.
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7.4 Evaluation: Exploratory User Study Using ProvenanceLens as a Design Probe

After establishing the design space based on provenance attributes, we wanted to study a

second research question, “How do people use provenance attributes during visual data

analysis?” For example, do users prefer mapping provenance to color, size, both color and

size, or something different, like an axis? If not visual encodings, do users prefer interact-

ing with provenance via data transformations such as sorting or filtering? Lastly, do these

preferences change for specific tasks, e.g., while reviewing someone else’s analysis history

versus doing their own analysis? We designed a decision-making task that involves review-

ing and answering questions about both another user’s and one’s own analytic provenance.

7.4.1 Pilot Studies and Evaluation Considerations

Before finalizing our study design, we explored two alternate designs and also conducted

subsequent pilot studies.

Pilot Study 1: Decision-Making. We recruited four Ph.D. students (three years into the

program) as our pilot users. We tasked users to explore a dataset of movies and select (1) ten

movies (records) satisfying certain criteria, (2) four movie characteristics (attributes) that

were important to their analysis, and (3) answer a series of questions about their analysis.

We observed users did not utilize the provenance attributes to track their analysis pro-

cess and only used them during the subsequent question-answering. We also noticed that

answering questions immediately after analysis may not be hard for certain users because

the analysis may be quite fresh in their memory. In addition, the idea to make users select

important attributes was straightforward and seemed redundant because the task criteria

already hinted what attributes to consider.

Pilot Study 2: Analysis Review and Decision-Making. We recruited two other Ph.D.

students as our pilot users. In this revised study design, we introduced an initial review task
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to first make the user explore another user’s analytic provenance, write three insights, and

then answer questions about the prior analysis process. The original task to select movies

followed this task. Our goal was to make the user actively utilize the provenance attributes

during their own analysis, and we believed making them answer questions about another

user’s analysis first would remove the fresh-in-memory aspect from the equation. We also

discarded the selection of four movie characteristics. Overall, we noticed this design had a

desired positive effect and decided to use it for our eventual user study, as described next.

7.4.2 Participants and Procedure

Participants. We recruited 16 participants from a public university in the U.S. who were

pursuing a bachelors (1), masters (11), or doctoral (4) degree in computing or related fields

(15) and economics (1). These participants were either enrolled in or alumni of at least one

visualization class and self-reported their visualization literacy to be at least 3 on a scale

from 1 (novice) to 5 (expert). Demographically, they were in the 18-24 (7) or 25-34 (9) age

groups (in years) and of female (5), male (10), or preferred not to say (1) genders.

Study Session. Each study session lasted between 75 and 90 minutes. We compensated

each participant with a $15 gift card for their time. We conducted the study remotely over

Zoom; the experimenter provided participants access to the study environment by sharing

their (the experimenter’s) computer screen and granting input control to the participant.

After providing consent, participants saw a five-minute video tutorial that demonstrated

the features of ProvenanceLens. Participants then performed a practice task on a dataset of

cars to get acquainted with the UI before starting the actual task.

The actual task was on a dataset of movies and lasted about 60 minutes. Participants

were not required to think aloud during the task to simulate a realistic work setting (al-

though some participants felt comfortable doing so). During the task, participants’ in-

teractions with the system were logged. The study ended with participants completing a
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feedback questionnaire and a background questionnaire. Each study session was screen-

and audio-recorded for subsequent analysis.

Task and Dataset. We designed the following visual data exploration and decision-making

task about a movies dataset:

Imagine your family is planning a month-long vacation to Europe. Going with you are your

siblings, parents, grandparents, your uncle and aunt, and their boy (your cousin). Your mom

began selecting some movies to pick and watch from for the occasional movie nights. Her target

is to select ten movies to carry to the vacation.

Because she wanted to ensure a delightful and well-rounded movie night experience for your en-

tire family, she took the below suggestions and preferences from some of your family mem-

bers into consideration.

1. Dad: “I like thrillers and comedies.”

2. Uncle: “Let’s watch a heartfelt drama.”

3. Cousin: “I want to re-watch a Harry Potter movie.”

4. Grandpa: “I would love to watch a 90s’ action film.”

5. Aunt: “I want to watch a hidden gem: a highly-rated movie that didn’t do well commercially.”

After selecting five movies, your mother got pulled to do another task, and assigned you to

complete it.

Thus, you will complete the following six tasks (T1-T6).

—— Working with your mom’s analytic provenance ——

T1 Review: Review the five movies your mom selected and many others she explored; write three

insights.

T2 Recall: Answer five objective questions about mom’s analysis.

T3 Visualize: Create visualizations to answer subjective questions about mom’s analysis.

—— Working with your own analytic provenance ——

T4 Analyze: Select the remaining five movies.

T5 Recall: Answer five objective questions about your analysis.

T6 Visualize: Create visualizations to answer subjective questions about your analysis.
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Task Que Description µAcc. µConf. µSur.
(%age) (/7) (/7)

T1 (Review) Q1 Review YOUR MOM’s analysis and write three insights. - - -

T2 (Recall) Q1 Select the movie characteristic(s) that YOUR MOM interacted with the MOST. 100 6.81 -
Q2 Which was the last (i.e. most recent) movie YOUR MOM interacted with? 93.75 6.81 -
Q3 Did YOUR MOM ever interact with the movie ‘Titanic’? 100 6.75 -
Q4 Did YOUR MOM interact with at least one movie from all ‘Content Rating’s? 100 6.69 -
Q5 Did YOUR MOM interact with all attributes at least once? 100 6.75 -

T3 (Visualize) Q1 What was the distribution of YOUR MOM’s focus across different movie ‘Genre’s? 100 6.75 -
Q2 How did YOUR MOM’s focus on ‘Drama’ Movies evolve over time? 100 6.06 -
Q3 Which were YOUR MOM’s most FREQUENTLY interacted movies? Try to show five. 100 6.63 -

T4 (Analyze) Q1 Select the five remaining movies. - - -

T5 (Recall) Q1 Select three movie characteristic(s) YOU most RECENTLY interact with. 100 6.88 1.88
Q2 Which was the first (i.e. earliest) movie YOU interacted with? 93.75 6.25 3.56
Q3 Did YOU interact with the movie ‘Pearl Harbor’? 100 6.81 1.63
Q4 Which ‘Content Rating’ category did YOU interact with the LEAST or NONE AT ALL? 100 6.69 4.19
Q5 Did YOU interact with at least half of the movie characteristics available? 100 6.88 1.94

T6 (Visualize) Q1 How similar were YOUR interaction patterns for ‘Comedy’ and ‘Thriller’ movies? 100 6.38 2.56
Q2 Which were YOUR most RECENTLY interacted movies? Try to show THREE movies. 100 6.63 2.69
Q3 Given an opportunity, which (kinds of) movies would YOU like to go back and interact with? 100 6.44 2.38

Figure 7.4: Tasks and summary performance statistics for sixteen participants: Task and
Question index, task Description, and wherever applicable, average accuracy (µAcc.),
average confidence (µConf.), and average surprise (µSur.) on a scale from one (low) to
seven (high). T1 and T4 were exploratory in nature, hence we did not compute accuracies
or ask participants to self-report confidence and surprise scores. Similarly, T2 and T3 were
focused on answering questions about mom’s analysis, hence we did not ask participants
to self-report their surprise scores. Overall, participants performed exceedingly well on all
the tasks, achieving high accuracies with high confidence with some moments of surprise.

To help you review and track the movies (records) and their characteristics (attributes) one has

interacted with how many times and when, our system provides two special provenance attributes:

Frequency and Recency. You can use these in the same way you would use the dataset attributes,

i.e., create visualizations by mapping them to visual encodings, filter by them, or sort by them.

Note that “interacted” refers to a user’s interactions in the interface such as hovering on a record to

get additional details, mapping dataset attributes and/or provenance attributes to visual encodings

(e.g., ‘Genre’ to x), applying a filter (e.g., ‘Title’=‘Titanic’) or sort.

7.4.3 Results

In this section, we present general and task-specific findings from the user study along with

participant performance on the six tasks (T1-T6) and discuss them in the context of the

qualitative feedback from our participants (P1,...,16).
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7.4.3.1 General Feedback

Participants scored ProvenanceLens 80.94 out of 100 on the system usability scale (SUS [186]),

finding it very useful. P15 acknowledged it is impossible to remember everything during

analysis, calling for “Tools like Tableau [to] really overlay communities’ or experts’ in-

teraction stats such as frequency and recency in their system. It is one of those features

that only adds value and is not necessarily a hindrance.” P14 was impressed that the two

provenance attributes could help answer a variety of questions, enabling users to revisit, re-

view, and maybe even recreate someone’s history of interactions while doing analysis. P11

liked being able to detect subconscious interaction patterns during analysis. P16 suggested

a potential use case, “If you are a manager and if you need to review the decision process

of your employees, then it is very useful.”

7.4.3.2 Task Performance

Figure 7.4 shows the task-specific breakdown of participants’ accuracy and self-reported

confidence and surprise.

Accuracy. Participants performed exceedingly well overall, achieving high accuracies

during both recall tasks (T2, T5) and visualize tasks (T3, T6). The mean accuracies were

as follows: T2 (µ = 98.75%), T3 (µ = 100%), T5 (µ = 98.75%), T6 (µ = 100%). We did

not compute accuracy for the review (T1) and analyze (T4) tasks as they were exploratory.

Only two participants (P13,14) incorrectly answered one question each. For instance, for

T2.Q2 (“Which was the last (i.e. most recent) movie YOUR MOM interacted with?”), P14

selected the ‘point’ mark type and assigned “Genre” to x, recency on size, and “Title” on

tooltip. Then, they applied a recency filter of [0.63, 1]. This configuration resulted in four

marks stacked on top of each other (unknown to the participant who thought there was only

one). The user hovered on it, read “The Curious Case of Benjamin Button” in the tooltip,

and selected it as the answer. However, this answer was incorrect because “Saving Private
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Ryan”, under this movie, had the higher recency score of 1.0. This error may have been

avoided if instead of (or along with) size, the user assigned recency to x or y, which would

have spaced out the points.

Confidence & Success. On a scale from 1 (low) to 7 (high), participants self-reported

very high confidence in answering questions during tasks T2 (µ=6.76, M=7), T3 (µ=6.48,

M=7), T5 (µ=6.70, M=7), and T6 (µ=6.48, M=7). In addition, while answering questions

based on their own analysis, participants self-reported varying surprise during tasks T5

(µ=2.64, M=2) and T6 (µ=2.54, M=2). Note that T1 and T4 were exploratory in nature,

hence we did not ask participants to self-report confidence and surprise scores. Similarly,

T2 and T3 were focused on answering questions about mom’s analysis, hence we did not

ask participants to self-report their surprise scores.

Fidelity. On a scale from 1 (low) to 5 (high), participants self-reported that overall, all

six tasks (T1-T6) caused low physical demand (µ=1.44, M=1), temporal demand (µ=2.44,

M=2), and frustration (µ=1.5, M=1), average mental demand (µ=3.31, M=3) and effort

(µ=2.94, M=3), but resulted in high performance (µ=4.38, M=4). On average, participants

spent around 56 minutes on the study and performed 409 interactions. We avoided seeking

feedback after each task to prevent interrupting the user’s analysis and demotivating them.

Summary. The high accuracy, confidence, and performance along with average effort

and mental demand suggest that participants were able to effectively use provenance at-

tributes to answer the questions. The high variance in surprise scores suggests that partic-

ipants were sometimes able to recall their analysis from memory (less surprise) or had an

incorrect mental model or recall of their interactions (more surprise).
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7.4.3.3 Task-specific Feedback

Reviewing Mom’s Previous Analysis (Review: Task T1). Due to the nature of this

task, all participants leveraged the provenance attributes and found them to be useful. Par-

ticipants felt that the provenance attributes could provide “a record of [mom’s] analysis”

(P12), which made it easier to “track her way of thinking through a quantitative behav-

ior analysis” (P3). For P6, the provenance attributes were only somewhat useful because

they were able to understand mom’s analysis simply by inspecting her final selections. On

the other hand, P4 argued that the provenance attributes “gave context for [mom’s movie

selections],” which they would have to otherwise guess (P12).

Answering Questions about Both Mom’s and One’s Own Analysis (Recall, Visualize:

Tasks T2, T3, T5, T6). Like T1, due to the nature of the questions, all participants found

the provenance attributes to be useful. P1 noted, “It was very useful to use provenance at-

tributes as filters and encodings. I would not have been able to answer questions effectively

without the visualization ability.” P14 noted, “While looking at and analyzing [mom’s] fo-

cus, it was hard to keep all the insights in mind, so having it visualized helped understand

and hence remember it better.” P9 found the provenance attributes to be more helpful to

answer questions about visualizing focus (T3, T6) than searching for insights (T2, T5),

noting that “I was able to concentrate on specific facets of [mom’s] focus at a time [via the

visualizations], which felt more organized.”

Selecting Remaining Movies (Analyze: Task T4). Ten participants (P1,2,3,5,6,7,10,11,12,16)

either did not use the provenance attributes or found them to be less useful. Among these,

P3 was more focused on selecting movies that satisfied the family’s constraints and hence

was more inclined to check the actual attributes rather than the frequency and recency. P6,12

speculated that the provenance attributes would be more useful if the study lasted longer or

was spread across multiple sessions.
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On the other hand, six participants (P4,8,9,13,14,15) found utility in tracking and review-

ing their provenance in real-time. P13 actively used the provenance attributes to keep track

of their own analysis and not become stuck while making a choice. P4 realized that after

satisfying all family members’ movie constraints, they were free to give their own recom-

mendations. They saw they had not interacted with “Production Budget” and “Worldwide

Gross” too much, so they created a scatterplot with these attributes, mapped frequency and

recency on color and size, and utilized the visual scents to analyze unexplored movies and

accordingly determine their final movie selections.

7.4.3.4 Reasons for Using the Provenance Attributes

Answer questions when unable to recall analysis behavior. Due to our study design,

answering questions was the most common reason to use the provenance attributes. Re-

viewing analytic behavior as a quantized set of variables (P3) and using them in visual

encodings (P1,14) and data transformations (P1) helped confidently answer questions (P3).

Verify and build confidence while answering questions. Sometimes participants re-

called answers from memory, but using the provenance attributes helped them verify and

double-check their choices (P14,16) and gain confidence (P12,14).

Save time during analysis. Some participants found the recency and frequency-based

data transformations and aggregations particularly useful to generate quick responses to

the study questions (P11), directly saving them a lot of time (P10).

Increase awareness, uncover new insights, and improve exploration coverage. When

selecting the remaining movies, the provenance attributes helped participants optimize

their analysis by increasing awareness (P4), helping them avoid revisiting the same points

(P9,15), and facilitating quick decisions (P15). Some participants uncovered new insights (P2,3)

or unexplored data (P3), and identified behavioral trends (P3).
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Task6, Que1: “How similar were your interaction patterns for ‘Comedy’ and ‘Thriller’ movies? Illustrate via a visualization.”

P1
P16

P9

P14P12

Figure 7.5: Five participants’ different strategies to answer the same question, T6.Q1,
“How similar were your interaction patterns for ‘Comedy’ and ‘Thriller’ movies? Illus-
trate via a visualization.” While P1 created an aggregate bar chart visualizing showing the
two “Genre”s on x, total frequency along y, and colored by average recency, P14 created a
scatterplot visualization faceted by “Genre”, colored by recency and sized by frequency.

Fun and Feel Good. For some participants, the provenance attributes were easy and fun

to use (P13). The real-time changes to the colors or sizes of points made them feel good

and feel like they were making progress in the task (P13).

7.4.3.5 Reasons for More or Less Surprise

While answering questions, participants were surprised because (1) the system’s answer did

not match their recollection of their own analysis, (2) the system’s answer did not match

their original analytic intention, (3) the system inadequately captured the participant’s fo-

cus (e.g., interactions with an aggregate visualization gave equal focus to constituent dat-

apoints, which was not agreeable to the user), or (4) the system logged interactions that

were perhaps accidental (our threshold to discard mouseovers under ∼250 ms be too low

to count towards focus). For example, P2 noted, “I found [an interaction] to be a Harry

Potter movie, which makes sense, but I had forgotten about having interacting with it first.”

On the flip side, participants were either less surprised or not surprised at all because (1)

they actively used the recency and frequency attributes during analysis and thus knew what

they were doing and (2) they were able to simply remember their behaviors. P5 noted, “I

already knew what I had focused on, but far ahead in the future, these provenance attributes

might be helpful to provide reasoning for my choices when I might not explicitly remember

my thought process.”
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7.4.3.6 Participant Strategies to Answer Questions

To answer questions, participants often utilized provenance attributes as a combination of

encodings, transformations (sort and filter), and subsequent interactions (e.g., tooltip on

hover). We observed 71 different strategies. For example, Figure 7.5 shows five partici-

pants’ different strategies to answer T6.Q1: “How similar were your interaction patterns

for ‘Comedy’ and ‘Thriller’ movies?” While P1 created an aggregate bar chart showing

the two “Genre” categories on x, frequency on y, and average recency as color, P14 used a

scatterplot encoding recency (color) and frequency (size), faceted by “Genre”.

Co-occurrence analysis. Figure 7.6 shows the co-occurrence of provenance attributes

(only frequency, only recency, or either) as A combinations of visual encodings compared

to B data transformations. In terms of visual encodings, x and y independently were used

most often followed by fill (color). Interestingly, frequency and/or recency were simulta-

neously mapped to both x and y 36 times. Between encodings and data transformations,

standalone encodings were used most often (131 times) followed by their combination with

record filter (encoding rFilter, 48 times) and attribute sort (encoding aSort, 35 times).

7.4.3.7 Preferences for Utilizing the Provenance Attributes

Figure 7.7 shows how users mapped data and provenance attributes to visual encodings A

, and their general preferences for encodings compared to transformations B .

Visual Encodings. For provenance attributes, x was the most preferred encoding fol-

lowed by y, fill, size, text, fillOpacity, row, annotation, and column. The encodings shape,

stroke, strokeOpacity, and strokeWidth were either rarely used or not used at all. Simi-

larly, for data attributes, x or y were the most preferred encodings. The nominal “Genre”

and “Content Rating” attributes were also occasionally mapped to fill and row encodings.

“Title” was predominantly mapped to tooltip, followed by x, annotation, y, and text.
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A B

Figure 7.6: Co-occurrence statistics for how users map provenance attributes (only fre-
quency, only recency, or either) to visual encoding combinations (A), as well as general
preferences for visual encodings compared to filtering, and sorting (B). Note that these
statistics correspond only to the recall (T2, T5) and visualize (T3, T6) tasks; we exclude
the review (T1) and analyze (T4) tasks as they were more open-ended in nature.

A B

Figure 7.7: User preference when mapping attributes to (A) different visual encodings and
(B) using visual encodings in general compared to data transformations.

Visual Encodings or Data Transformations. For provenance as well as data attributes,

visual encodings were most preferred followed by filtering records and sorting attributes.

7.4.3.8 Recency or Frequency? What was more Useful?

Three participants (P1,5,14,16) mentioned frequency was more useful than recency, in partic-

ular to identify movies they had visited multiple times. P11 also noted that frequency aided

in recognizing options that were still being considered. P15 suggested that while frequency

was more useful for the short duration of the study, recency might be more valuable in the

long term, especially for tasks like auditing or reviewing analysis after days or weeks.
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7.4.4 Discussion

7.4.4.1 Making Provenance a Core Aspect of Analysis

Our study revealed that users can use provenance attributes to answer questions with high

accuracy and confidence, while also sometimes being surprised. In addition, there were

several instances of users requesting new capabilities not currently supported by Prove-

nanceLens. For example, P6 suggested an interesting feature to toggle between their own

provenance and their mom’s during analysis. P8 requested the ability to “undo” an acciden-

tal interaction, hinting towards an ability to directly manipulate/correct their provenance.

These feature requests solidify that provenance still has unrealized utility, and should thus

be considered as a core element during analysis, thereby calling for visual data analysis

tools to inherently support it.

7.4.4.2 Fostering Provenance-driven (Not Data-driven) Analysis.

Many participants visualized provenance by mapping it to visual encodings (e.g., color)

to keep track of their ongoing analytic progress (e.g., to avoid revisiting the same points).

Some participants also actively sorted and filtered the data attributes and records by prove-

nance attributes to either reduce their search space or look-up what has been previously

considered. These are examples of provenance-driven (not data-driven) analysis wherein

provenance information is used to steer the analysis process. Similar to how data-driven

analysis focuses on using data to guide decision-making and insight generation, provenance-

driven analysis can surface the lineage and context of data and interactions to determine

next steps and ensure the accuracy, reliability, and interpretability of the analysis. We thus

call for tools to support both these analysis paradigms.
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7.4.4.3 Integrating Provenance-Tracking & Visual Data Analysis

During our study, participants often used provenance attributes together with data attributes.

For example, participants mapped provenance attributes to x, y, fill, and size, which are

encodings commonly used for data attributes. Furthermore, there were cases where a par-

ticipant replaced a data attribute (that was mapped to a visual encoding), with a provenance

attribute (and vice-versa). In other cases, participants had a preferred way of interacting

with analytic provenance (e.g., always mapping it to fill) and they consistently used the

same strategies during analysis or when answering questions. These behaviors suggest that

tools should offer both data and provenance attributes for more flexible workflows.

7.4.4.4 Affording Flexibility in Mapping Provenance to Encodings

Our study revealed that users often visualized provenance on visual encodings such as x,

y, and tooltip, something not often seen in existing tools. Furthermore, while performing

tasks T2 (Recall) and T4 (Analyze), some participants used multiple visual encodings for

the same question in succession, to verify the results. For example, P4 first mapped fre-

quency to fill, but found it hard to accurately differentiate between different shades and

hues (which can be hard for colorblind users). To verify their takeaways, they mapped

frequency to size instead, but were worried about occlusion, depending on the x/y point

positions. Consequently, they applied a double-encoding by also mapping frequency to x.

This flexibility shows that if an encoding is unavailable and another is inferior, then a third

encoding can still be effective, underscoring our core goal to afford flexibility in mapping

provenance during analysis.

7.4.4.5 Comparing Provenance Encodings and Transformations

During our study, participants regularly mapped provenance to visual encodings or applied

data transformations. However, depending on the question type, one technique can be more

efficient than the other. Consider T6.Q2 wherein participants were tasked to show three
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movies that they most recently interacted with. Those who applied a recency filter often

struggled with this task due to ties in the number of times a movie was interacted with. For

example, P1 asked, “How do I get exactly three?” Filtering for top-N movies (records) or

movie characteristics (attributes) is less trivial as it is impossible to guess what range will

produce the exact number of items. Mapping provenance to positional encodings (e.g., x)

or filtering based on ordinal provenance rank instead of a quantitative provenance score

can make it easier to spot ties.

7.4.4.6 Supporting Collaboration during Visual Data Analysis

In tasks T1–T3 of our user study, participants had to utilize provenance attributes to review

and answer questions about another user’s (mom’s) analysis. In doing so, we indirectly

studied how provenance attributes can facilitate asynchronous collaboration. By analyzing

another user’s provenance in terms of what they looked at, when, and for how long, the user

can not only verify or find flaws in prior analyses but also formulate a starting point or be-

come unstuck [4]. However, overreliance on another user can hamper creativity and result

in “herd behavior” [4]. Balancing these two behaviors can result in efficient collaborative

analysis and decision-making.

7.5 Limitations and Future Work

7.5.1 Modeling Provenance as an Attribute.

First, mapping recency and frequency to visual encodings, such as darker and larger points

for more recent or frequent data, can foster confirmation bias [262] by leading users to un-

knowingly and disproportionately prioritize recently or frequently interacted data points.

Such behavior is an unfortunate consequence of the recency effect [263] and the frequency

effect [264]. As a result, users may potentially overlook less accessed but relevant infor-

mation. To mitigate this bias, a reversed provenance scale that emphasizes older and less

frequent data (as darker and larger) can provide a more balanced view.
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Next, our approach to normalize recency and frequency values to a uniform ranked scale

from zero to one, instead of displaying absolute values like raw timestamps and interaction

counts, can simplify comparisons but sacrifice explainability. For instance, without times-

tamps, users may not understand the exact sequence or timing of interactions, i.e., whether

frequent interactions occurred closely together or were spread out over time. Additionally,

users may overlook the original context (i.e., the data attributes and records themselves)

or the rationale of the previous user whose provenance they are reviewing. Such lack of

clarity can lead to incomplete or biased interpretations during decision-making.

Lastly, provenance attributes can be modeled in multiple ways. For frequency, the de-

fault relative strategy divides the “total interaction units” for an attribute by the maximum

value among all attributes; the absolute strategy divides each value by the sum of all val-

ues; and the binary strategy treats zero interactions=0 and at least one interaction=1. For

recency, the default relative strategy determines the value based on the sequence (or rank)

of interactions; the absolute strategy determines the value based on the actual time dura-

tion between interactions; and the binary strategy assigns a value=1 for the most recent

interaction and a value=0 for all other interactions. Our conceptualization of provenance

attributes seamlessly supports all of these models for subsequent visualization.

7.5.2 Exploratory User Study.

While ProvenanceLens lets users customize the range of provenance attributes (e.g., darker

points can be mapped to smaller or larger values), we disabled this functionality to min-

imize users’ cognitive load during the study. Systematically studying this feature, i.e., if

one range leads to more unique data discoveries [84] while another leads to more data re-

visits [27] is future work. Next, we modeled recency and frequency only based on mouse

interactions such as clicks and hovers, which may not be a complete proxy for focus. A

similar confusion had also come up during our pilot studies, but we tried to address it by

clearly explaining to users how provenance is computed, and ensuring that users become
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acquainted with it during the practice. We posit some participants may have been confused

by the system’s projection of their provenance not aligning with their expectations. Future

work may utilize user gaze (e.g., which attribute is the user actually looking more at) to

more accurately model focus. Lastly, we currently model focus by equally weighting all

interactions but future work can weight recent interactions more than the older ones [110].

7.6 Summary

In this chapter, I described a design space for communicating analytic provenance, by

utilizing provenance as an attribute during analysis, mapping it to visual encodings and

data transformations. In particular, we utilized provenance as an attribute during anal-

ysis, tracking both recency and frequency of user interactions with data. We integrated

these provenance attributes into a prototype visual data analysis system, ProvenanceLens,

which allows users to track and visualize recency and frequency by mapping them to vi-

sual encodings (e.g., color or size) and data transformations (sort or filter). An exploratory

study with sixteen users found that provenance attributes can help users accurately and

confidently review and answer questions about their analysis, often surprising them and

facilitating self-reflection. For details, I refer the reader to the associated publication [11].

Additionally, because provenance information is often the basis for provisioning guidance,

this design space sets the foundation for the guidance design space, as described next.
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CHAPTER 8

DESIGN SPACE AND PLAYGROUND FOR COMMUNICATING GUIDANCE

Building upon the design space for communicating provenance (chapter 7), in this chapter,

I describe a design space for communicating guidance, by introducing the concepts of

“wildcards”, “states”, and “levels”, and presenting it through adaptive UI elements, partly

achieving RG3: Establish a design space for guidance communication during analysis.

This chapter is based on work under review [12] and is patented by Adobe Research [21].

8.1 Motivation and Background

Recall from the evaluation of “Lumos” (chapter 5) that presenting “interaction traces” (vi-

sual scents of user’s interactions) in the UI makes users pause and reflect on their analytic

behavior during analysis. Many users found this technique to be useful, intuitive, and ‘fun’.

For example, these users inspected the ex situ interaction traces (i.e., red-green colored

attributes in the Distribution Panel, as determined by the AD [111] bias metric), acknowl-

edged that they did indeed over- or underemphasize certain attribute categories/quantiles,

and were also able to devise successful mitigation strategies. Essentially, these users ap-

plied a ‘reverse’ filter or removed an existing ‘culprit’ filter after which their interactions

negated their over- or underemphasis, respectively. Another set of users assigned the ‘bi-

ased’ attribute of interest to one or more visual encodings (e.g., X or Y axes) and then

relied on the in situ interaction traces (i.e., points colored in shades of white→blue) to

perceptually drive their subsequent mitigating interactions. However, unlike these users,

some other users expressed concern and confusion, essentially wanting some ‘more’ and

also ‘different’ type of guidance. For example, upon inspecting the same ex situ interaction

traces (red-green colored attributes), these users were unable to comprehend the visual cues

to devise a strategy (i.e., next steps) to mitigate the skewed analytic behavior.

149



Next, even if the users are able to determine next steps, sustaining this process can

become cumbersome and frustrating because in trying to fix a biased attribute, the user

might unknowingly end up biasing another, essentially, break their correct analytic behav-

ior with other attributes. For example, one user saw their interactions with different movie

Genres (Concert, Documentary, and Western) and reflected, “I should now interact with

Drama since that is maximum and these [other bars] are almost nil.” They applied a filter

to correct their unintended underemphasis, but after a few interactions found themselves

overemphasizing towards Drama movies and had to reverse that filter; this derailed them

from making progress towards their main analysis task, which is undesirable. This neces-

sitates guidance to be explainable and actionable. So I ask (and propose):

1. What if the UI could present as guidance explanatory natural language (NL)-based

analytic behavior facts (inspired from interactive data facts [265]) based on the

users’ interactions with data (e.g., “You have underemphasized Drama movies.”)?

2. What if the UI could present as guidance NL-based concrete next steps to mitigate

bias (e.g., “Apply the ‘Genre=Drama’ filter and interact with datapoint P1.”)?

Next, viewing ex situ interaction traces separately in the Distribution Panel (in Lumos)

was a design choice to provide a hybrid of orienting and directing guidance [35, 36] to

users: orienting because the UI only presented visual scents for the distribution of the

user’s interactions and the underlying data; and directing because these attributes were also

ranked with the redder, higher AD metric values at the top to capture the user’s attention

first for priority mitigation. However, this form of passive guidance was inconvenient and

not enough for some users; inconvenient because the panel was positioned to the right of

the screen, away from all the analysis action because of which the user has to do a lot of

back-and-forth between the two; not enough because the user still has to manually examine

the problem(s) with their analytic behavior and accordingly devise a mitigating solution;

for example, one user called for “a button to automatically apply a reverse filter [instead of
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them having to manually apply it].” An extreme example of guidance is to directly point the

user to a certain ‘best’ datapoint to interact (instead of applying a reverse filter which may

result in multiple datapoints). Lastly, while different degrees of guidance can be helpful,

what is also desirable is users’ preferences, or more broadly, their agency during analysis.

What if a user is working with a particular ‘analysis view’ (e.g., scatterplot) and the com-

putational guidance by the system makes them switch to a completely different view (e.g.,

barchart with completely different attributes)? We believe this can also derail the analysis,

necessitating guidance systems that integrate user preferences into their workflows.

Thus, to provision such co-adaptive guidance, we need a system that offers different

degrees of guidance and enables seamlessly transitioning between them, both manually

driven by the user’s preferences and automatically by the system’s computations. We hy-

pothesize supporting such co-adaptive, dynamic guidance with a shared agency and control

between the user and the system can result in enhanced, efficient, and enjoyable analysis.

A recent survey of existing guidance approaches in visualization literature [48] revealed

that (1) orienting is the most common degree of guidance followed by directing and then

prescribing, and (2) the total number of approaches providing multiple degrees of guidance

is very small, and no approach provides all three guidance degrees. So I ask:

1. How can we design adaptive UI elements that provide different degrees of guidance?

2. What if the user is interested in a certain type of guidance (e.g., directing guidance

on filters)? How then can the user specify such guidance preferences to the UI? In

response, how then can the system adapt its guidance strategy?

Zhou et al.’s [50] survey paper proposed a four-dimensional design space to characterize

how visualization systems recommend content to users during visual data analysis. These

dimensions include “Directness” (where content is surfaced relative to user interaction, ei-

ther in situ or ex situ), “Forcefulness” (the intrusiveness level of recommendations), “Sta-

bility” (timing of content updates, such as periodic or event-driven), and “Granularity” (the
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atomic unit of recommended content, like a document or dataset entity). This framework

aids in designing and evaluating guidance within interactive data visualizations. In this

chapter, we propose a complementary design space, that enables a co-adaptive guidance

dialog between the user and the system, along with a playground system to demonstrate

the various configurations and combinations of the design space, as described next.

8.2 Design Space for Communicating Guidance

In this section, we describe our proposed design space for guidance communication during

visual data analysis. We will first define new concepts and terminologies and then explain

each aspect of the design space along with relevant usage scenarios.

1. Wildcard. We define a “wildcard” as a special attribute that can be assigned to any

attribute or record of a tabular dataset. Each wildcard holds values about an analytic

entity – such as user’s focus (akin provenance attributes [11], described in chapter 7),

data quality and usage (akin DataPilot, described in chapter 3), and so on. We utilize

these wildcards to model and subsequently present guidance in the UI.

2. (Wildcard) State. We associate each wildcard with a contextual temporal perspective

called “state” which can take four values: Past, Present, Problem, and Future, covering

all relevant aspects of analysis. Each state offers a unique perspective: Past reflects the

previous analysis state of the wildcard; Present represents the current state; Problem

represents the issue with the current state, or the ‘knowledge gap’ between the user and

the system; and Future represents the system-suggested next steps for the user that over-

come the Problem. These states are inspired by Engels’ characterization of guidance,

in particular the “what” dimension that (also) defines the problem which is decomposed

into an “initial state” at the start of analysis and a “goal state” that must be reached [123].

3. Level. We define a “level” as the amount of guidance to provision during analysis. It

can take five values: Level 1, Level 2, Level 3, None, Adapt. Level 1 is best represented
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as orienting-like guidance [35], wherein the system provides users with subtle hints to

help them focus on relevant data without directing specific actions. Level 2 is best rep-

resented as directing-like [35], wherein the system provides users with a fixed number

of explicit aspects to focus on or steps to pursue next. Level 3 is best represented as

prescribing-like [35], wherein the system provides users with exactly one ‘best’ aspect

to focus on or step to pursue next. None implies no guidance. Adapt represents any

one of the above guidance levels at any given point in time, aiding dynamic (adaptive)

transitions between them; this level can be system-determined or user-configured.

For each wildcard, we structure our design space as a 3x4 matrix that balances the

guidance levels (vertical axis) with different wildcard states (horizontal axis), as shown in

Figure 8.1. The horizontal axis of the design space captures the different states of guidance

provided: Past (previous state), Present (current state), Problem (issues in current state),

and Future (suggested future actions). This horizontal axis guides users in understanding

their previous action, their current actions, potential issues with their current actions, and

ideal next steps. The vertical axis introduces three guidance levels that explain the same

state in progressively different ways, ranging from Level 1 (to orient the user by offering

visual cues to focus on relevant data), Level 2 (to direct the user to focus on or consider

one of top ‘N’ entities), Level 3 (to prescribe a single ‘best’ entity to interact with next).

We believe that together, wildcards and their states cover all relevant analysis states

necessary to provision guidance, and also form a solid basis to intuitively and seamlessly

transition between the analysis states. With levels, these wildcards and their states can

provision different amounts of the same guidance, depending on the analysis needs and

the user’s preferences. We next describe each cell in the design space matrix along with a

relevant use-case. For ease of explanation, we will describe each wildcard state within a

guidance level, before moving to the next level; additionally, we will describe the Present

state before Past, even though logically the latter occurs before.
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Focus FrequencyPast, Present, Problem, Future States of User’s across Three Guidance Levels

User has most recently interacted with p320, it is the only point to become bigger, darker from “past” to “present”. A

User’s focus is mapped to both size and fill of scatterplot points; darker + bigger points = more focus

B

B User has not/less interacted with p186, hence it has a bigger, darker point in “problem” than “present”.

C

C p188 has one more and p247 has one less interaction than desired (“present”), both resulting in same “problem”.

D

D For the same “problem” state      , p247 has a bigger, darker “future” state than p188 (p247 has been interacted 
one time less so it can be interacted once, whereas user cannot ‘undo’ p188’s extra interaction from provenance).  

C

Assume the system’s goal is to make the user equally interact with all points (can be more than once too)

a Level 1 orients the user by showing the distribution of their focus on all points (all are sized, shaded differently).
b Level 2 highlights top N points, in this case, the top 3 frequently interacted points, directing user’s attention. 
c Level 3 only highlights the top point (p701), in this case, the most frequently interacted point.

A

a

b

c

For the same analysis / visualization state, 

While this example was for the Past State, similar effects can be observed in the Present, Problem, and Future.

While this example was for Level 1, similar effects can be observed in Level 2 and Level 3.

Figure 8.1: Example Application of the proposed design space using a “Focus Frequency”
Wildcard that tracks the frequency of users’ focus on individual datapoints in a scatterplot,
as visualized across the four States (Past, Present, Problem, Future) and three Levels of
guidance (Level 1, Level 2, Level 3). Follow the annotations in the figure to understand
the state transitions in this case. Additionally, while this example utilizes fill and size to
encode the wildcard, it can also utilize other visual encodings – such as x, y, shape – and
data transformations such as filter and sort, akin ProvenanceLens (chapter 7).
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Consider Figure 8.1 which illustrates an example application of this design space using

a “Focus Frequency” Wildcard that tracks the frequency of users’ interactions (focus) on

each scatterplot datapoint. Note that, while this example utilizes fill and size to encode

the wildcard, it can also utilize other visual encodings – such as x, y, shape – and data

transformations such as filter and sort, akin ProvenanceLens (chapter 7).

Level 1. This level provides visual cues on the distribution of wildcard values across all

datapoints, orienting the user without directing or prescribing next steps, granting

complete user agency and control.

Present. This cell reflects the user’s current analysis, encoding the frequency of

their focus on datapoints using shades of blue and varying sizes, en-

abling the user to determine their most frequently interacted datapoint

(by looking for the biggest and darkest datapoint).

Past. This cell reflects the user’s previous analysis state, enabling the user

to determine their most recently interacted datapoint (by finding the

‘diff’ with the Present state, as shown in Figure 8.1 A ) or, if the system

permits, potentially perform an ‘undo’ operation.

Problem. This cell reflects the problem in the user’s present state (or the ‘knowl-

edge gap’ with the system). Consider the guidance scenario shown in

Figure 8.1 wherein the user’s goal is to interact with each datapoint

equally (not necessarily exactly once). In this case, if a user interacts

with one datapoint, then the other uninteracted datapoints automati-

cally have a ‘problem’. When this problem is mapped to visual encod-

ings (e.g., fill, size), darker and bigger points indicate most problem-

atic points (Figure 8.1 B ), nudging users to do something about them

(e.g., interact). Note that, depending on the task, there can be different

Problem states (and hence, Future states) for the same Present state.
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Future. This cell reflects the system recommended future state, or essentially,

a kind of fix to the Problem state. Note that, in some cases, this Future

state may be equivalent to the Problem state (because entities with the

biggest problems are generally the top choices for immediate future

consideration). However, in the guidance scenario illustrated in Fig-

ure 8.1, wherein the task is to ensure equal focus on all datapoints, if

one datapoint has been interacted exactly one time more than the target

number of interactions (at that time), and another datapoint has been

interacted exactly one time less than the target number of interactions,

then they both have the same Problem state, as both are off-target by

one interaction (Figure 8.1 C ), but different Future states, as the sys-

tem will prioritize interacting with the less interacted point as it cannot

undo the interaction with the more interacted point (Figure 8.1 D ).

Level 2. Compared to Level 1, which highlights all datapoints, Level 2 selectively high-

lights the top-N datapoints (e.g., most frequently interacted points with high “Fo-

cus Frequency”), directing the user to continue focusing on them, while sacrific-

ing some agency and control (as the ‘full picture’ is no longer available). Alter-

natively, the system can selectively highlight the bottom-N datapoints (i.e., least

frequently interacted points) directing users to focus on or consider them next.

Additionally, if multiple datapoints have the same value, one can either highlight

all of them (which may exceed ‘N’) or use a “first come, first served” approach

until the desired ‘N’ is reached, though this may be less objective.

Present. Instead of highlighting all datapoints, the system selectively highlights

the top-N most frequently interacted points (high “Focus Frequency”).

In doing so, Level 2 guidance provides a quicker, more focused overview

of the user’s current state, compared to Level 1.
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Past. The system selectively highlights the top-N most (or bottom-N least)

frequently interacted datapoints until the state before the Present, aid-

ing the user in quickly assessing prior decisions (Figure 8.1 b ).

Problem. The system highlights the top-N most (or bottom-N least) interacted

datapoints, helping the user quickly identify key problematic areas to

focus on or (not) and accordingly determine next steps.

Future. The system highlights the bottom-N least frequently interacted data-

points, directing the user to next interact with one of them. Note that

in our example, the top-N most frequently interacted datapoints are not

highlighted because one cannot ‘undo’ an ‘extra’ interaction to meet

the desired interaction count (hence only bottom-N are highlighted).

Level 3. Compared to Level 1, which highlights all datapoints and Level 2, which selec-

tively highlights top-N or bottom-N datapoints, Level 3 highlights exactly one

‘best’ datapoint, prescribing the user to focus on it next, entirely sacrificing user

agency and control (as information related to other datapoints is unavailable).

Present. The system highlights the most (or least) frequently interacted data-

point thus far. All other datapoints share the same visual properties.

Past. The system highlights the most (or least) frequently interacted data-

point immediately before the Present state.

Problem. The system highlights the most (or least) ‘problematic’ datapoint in the

Present state, nudging the user to assess and find the fix by themselves.

Future. The system highlights its top-choice datapoint to focus on next.

8.3 Lighthouse: A Playground for Demonstrating the Guidance Design Space

We developed a visual data analysis system, Lighthouse, that offers an interactive play-

ground with adaptive guidance-enriched UI elements, that seamlessly transition between
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different guidance levels, for each wildcard state. Lighthouse essentially helps users ‘ex-

perience’ the entire guidance design space matrix and is the first VA system of its kind.

8.3.1 User Interface

Figure 8.2 shows the Lighthouse user interface with the following views:

F

A

B

C

D

E

Figure 8.2: The Lighthouse user interface includes traditional visual data analysis func-
tions: (A) Data Attributes View, (B) Marks and Encoding View, (C) Visualization
Canvas, (D) Data Records View, along with a new (E) Guidance Panel.

A Data Attributes. In this view, users upload and configure the dataset (2) and see

the underlying attributes (or features or columns). Users can sort and filter the attributes

using the different wildcards (e.g., “Focus”) and their states (e.g., Present). Hovering on

the information icon � shows the attribute’s definition in a tooltip. Clicking on the expand

icon � opens a detailed view with a distribution plot of the attribute’s values: an area curve

for numerical attributes and a column chart for categorical attributes, both of which show

percentage counts corresponding to the attribute quantiles and categories, respectively.
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B Mark. This view includes a dropdown to configure the mark type for the visualization.

Users can select one of point, bar, line, area, or text to begin a visualization specification.

C Encodings. This view shows the visual encoding channels. Users select or drag one or

more data attributes and/or guidance wildcard states to one of x, y, fill, fillOpacity, stroke,

strokeOpacity, strokeWidth, shape, row, column, tooltip, and/or text to complete a visual-

ization specification. An additional encoding, annotation, adds a new annotation displaying

the value of the encoded entity next to the selected mark.

D Visualization. This view renders an interactive visualization based on the selected

mark type and activated visual encodings in the “Encodings” view. It also includes a “Fil-

ter” drop-zone to filter out datapoints by data attributes and/or wildcard states. A numerical

attribute displays a range slider and a categorical attribute displays a multiselect dropdown.

E Data Records. This view shows the data bound in the visualization as a paginated data

table. If the user hovers on a datapoint in a unit visualization (e.g., a scatterplot), this table

filters to only show that data record whereas if the user hovers on an entity in an aggregate

visualization (e.g., a bar showing the mean value), this table filters to show all data records

belonging to the hovered entity (e.g., the bar).

F Guidance Panel. This view enables users to configure different aspects pertaining to

guidance: (1) a slider to adjust the “Level” or the amount of guidance (to one of None,

Level 1, Level 2, Level 3, or Adapt); recall that the Adapt mode is a dynamic system-

determined guidance level that, as per the intended analysis use-case, can dynamically

transition between the other fixed guidance levels; (2) a dropdown to select one or more

“Wildcards” (e.g., “Focus” (Frequency), “Data Quality”); and (3) handles for “States” that

contain the values corresponding to the wildcard state (Past, Present, Problem, Future), and

which can be utilized in the UI as attributes, e.g., mapping to encodings or applying data
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transformations. Lighthouse supports multiple wildcards, each with their own states, e.g.,

one can simultaneously interact with Present + “Data Quality” along with Future + “Focus”.

For simplicity, we demonstrate the UI with only one wildcard – “Focus” (Frequency).

8.3.2 Guidance Enhancements in the User Interface

No Guidance Level 1 Guidance Level 2 Guidance Level 3 Guidance

Preview Suggestion (in Vis)
Apply Suggestion (in Vis)

Information

No Guidance Level 1 Guidance Level 2 Guidance Level 3 Guidance
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Interact with p1 with IMDB Rating=1

Interact with the R-rated record: p28

Figure 8.3: Attribute Panel showing underlying data distributions (“No” guidance), interac-
tion facts (Level 1), multiple recommendations (Level 2), and one ‘best’ recommendation
(Level 3) for each guidance level, using natural language, visual cues, and calls to action.

Guidance Facts and Recommendations. To address the challenge of determining next

steps solely based on visual cues, as also surfaced in the evaluation of Lumos (chapter 5),

Lighthouse offers additional guidance via natural language facts and recommendations.

Consider an ‘exploration bias’ mitigation scenario, wherein the user has exhibited bias

against a categorical attribute, e.g., “Content Rating”, by overemphasizing “PG-13” movies
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(Figure 8.3). Depending on the chosen guidance “Level” – Level 1, Level 2, and Level 31

– the system communicates relevant guidance as follows:

Level 1. The system orients the user by presenting “interaction facts” – relevant factual

information computed from the logs, e.g., “86.21% of your focus has been on

values with Content Rating = [PG-13].” Additionally, the user can hover on the

“Show me” icon button to visualize the fact in the corresponding distribution plot.

Essentially, in addition to the blue area curve (Focus) and the red line (Target),

the system uses green rectangle to highlight the region referred to in the fact.

Level 2. In addition to showing Level 1 guidance, the system additionally directs the user

by suggesting an operation (that will result in multiple next steps to choose from),

e.g., “We suggest you interact less with Content Rating = [PG-13].” Addition-

ally, the user can hover on the “Help me” question-mark icon button to preview

this suggestion. Upon review, if the user is happy with the suggested operation,

they can click the toolbox icon button to execute the operation. The user can then

decide which of the remaining datapoints to interact with next.

Level 3. The system prescribes a single ‘best’ next step for the user to perform, e.g., “In-

teract with the R-rated record p28.” Clicking the “Help me” toolbox icon button

will apply a filter to show exactly one datapoint (id=28) to interact with next.

Guidance Traces. Lighthouse operationalizes the proposed guidance design space and

makes them available in the user interface as “guidance traces” (or visual cues of guidance).

Essentially, users can map one or more wildcard “States” to visual encodings and/or apply

data transformations (e.g., filter), to visualize and interact with the guidance scents in the

Visualization Canvas as well as the glyphs in the Data Attributes and Data Records views,

similar to interacting with provenance attributes in ProvenanceLens (chapter 7).

1The fourth Adapt level represents one of three guidance levels at any given point in time.
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Figure 8.2 shows an example scenario wherein the user is interacting with points in a

scatterplot of “Running Time” and “IMDB Rating”. They have (1) mapped the Present state

of the “Focus Frequency” wildcard (frequency of the user’s interactions with individual

datapoints and attributes) to the fill visual encoding, visualizing their present distribution

of focus via different shades of blue; (2) filtered out points in the visualization that have

Present focus under 0.25 units; and (3) sorted data attributes in the Data Attributes View

as well as data records in the Data Records View based on their Present focus.

Similarly, Figure 8.1 shows an example scenario wherein the user is interacting with

points in a scatterplot of “Worldwide Gross” and “Production Budget”, and reviewing the

Past, Present, Problem, and Future states of the “Focus Frequency” wildcard, (double)

mapped to the fill color and size visual encodings, across all three guidance levels.

Numerical Attribute
Categorical Attribute

Figure 8.4: GuidanceWidgets – enhanced UI controls that guide users about the next oper-
ation(s) to perform. Multiselect dropdowns for categorical and range sliders for numerical
attributes overlay which options/range to select (in green) or remove (red strikethroughs).

GuidanceWidgets. Next, Lighthouse introduces GuidanceWidgets – enhanced UI con-

trols that guide users about, e.g., what operation(s) to perform next. Consider an ‘explo-

ration bias’ mitigation scenario, wherein the user has exhibited bias against a categorical

attribute, e.g., “Content Rating”, by overemphasizing “PG-13” movies (Figure 8.4). To
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No Guidance Level 1 Guidance Level 2 Guidance Level 3 Guidance

Figure 8.5: GuidanceWidgets providing guidance across different levels of detail.

mitigate this bias, the system recommends interacting less with “PG-13” movies by apply-

ing a ‘reverse’ filter. The system communicates this via a natural language explanation in

the Data Attributes view (e.g., “We suggest you interact less with Content Rating = [PG-

13]”) to which the user can respond via the “Help me” icon button. Specifically, if the user

hovers on the question-mark icon, the system will offer a visual preview of the operation

to perform next (e.g., filter out “PG-13” movies). This preview is shown via an enhanced

multiselect dropdown wherein green options will be retained, and red and struckthrough

options will be filtered out. For numerical attributes (e.g., “IMDB Rating”), the system

similarly communicates the filter operation by highlighting the suggested range in a range

slider. Additionally, these widgets can overlay visual scents, akin Scented Widgets [85],

corresponding to the “Past”, “Present”, “Problem”, and “Future”. Lastly, the widgets can

also disable options/ranges (preventing the user from selecting them) or reorder options

based on some computed preference order (as an example of directing guidance). If the

user is satisfied with the preview, they can click the toolbox icon, and the system will ex-

ecute the corresponding operation(s). Figure 8.5 illustrates how these widgets can adapt
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to different guidance levels. Through these enhanced UI controls, users receive contextual

guidance in situ, and which also ensures a fluid transition through the wildcard states [172].

8.4 Summary

In this chapter, I described a design space for communicating guidance, represented as a

3x4 matrix comprising three guidance levels and four wildcard states. Guidance “levels”

refers to the amount of guidance to provide; inspired by Ceneda et al.’s [35] characterization

of guidance degrees, we model five guidance levels: level 1 (orienting), level 2 (directing),

level 3 (prescribing), none, and adapt (any of the above). “Wildcards” are special attributes

that can be assigned to any attribute or record of a tabular dataset – such as frequency of

user’s interactions, data quality, and so on. Next, we associate each wildcard with a contex-

tual temporal perspective called “state”, which takes four values: past, present, problem,

or future. This characterization allows users to be guided about their previous interactions,

their current state, potential issues with their current state, and ideal next steps.

Additionally, these wildcards and wildcard states can be utilized as attributes during

analysis by mapping them to visual encodings and data transformations (akin the recency

and frequency provenance attributes described in chapter 7). For example, consider a user

(1) maps their present (state) frequency of focus on data points (wildcard) to the color

encoding channel and (2) sets the guidance level to Level 1. In the resultant visual config-

uration, they will observe darker points as those that have been focused more frequently

than others. Instead, if the user maps the wildcard to the future state and chooses Level 3

guidance, they will observe exactly one dark point that they must interact with next.

We also introduce a visual data analysis system, Lighthouse, that serves as a playground

to demonstrate and study the introduced design space. This system utilizes visual cues and

NL explanations to communicate different levels of the same guidance via adaptive UI con-

trols. We demonstrate the effectiveness of this system through a series of usage scenarios.

For details, I refer to the associated publication [12] (under review) and patent [21].
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CHAPTER 9

DEMOCRATIZING GUIDANCE FOR VISUAL ANALYTICS

In this chapter, I describe a library of enhanced user interface (UI) controls, such as sliders

and dropdowns, that tracks and dynamically overlays analytic provenance. By showing

the user what they have done so far, these widgets can make the user reflect upon their

present choices to influence subsequent ones. Additionally, if these widgets are preconfig-

ured to show customized information (e.g., interaction behavior of peers), they can be used

to nudge users in specific directions (e.g., interact with previously overlooked aspects).

Next, because provenance is often a basis for providing guidance, the provenance-tracking

ability of the library can be used to prototype guidance systems. Lastly, this library is open-

source, enabling developers to build custom provenance and guidance systems, achieving

RG4: Create tools to help developers build custom guidance-enriched systems. This chap-

ter is based on work published at IEEE VIS 2024 [9].

9.1 Motivation and Background

Analytic provenance is the documented history of data and analytical actions, showing how

data was obtained, transformed, and analyzed. In a visualization context, analytic prove-

nance tracks how users interact with visualizations as a representation of their reasoning

process [52], which can be helpful for recalling the analysis process, reproducing it, col-

laborating, and logging for evaluation or meta-analysis [53]. Presenting provenance during

analysis has been shown to increase awareness of analytic behaviors [27, 7], increase con-

fidence [86], mitigate biases [25], and result in more unique insights [84, 85].

Prior work has made strides in logging frameworks that help developers capture and

store provenance [102, 103, 104, 105]. For example, Trrack [105] is an open-source library

to create and track the provenance (history) of interactions in web applications for various
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purposes including action recovery, reproducibility, collaboration, and logging; TrrackVis

complements Trrack via a customizable provenance visualization front-end [105].

Figure 9.1: Phosphor Objects [266] instantly show and explain state transitions in GUI
controls. The slider labeled “volume” was dragged to the left, the two checkboxes corre-
sponding to “george” and “ken” were unchecked, and the combo box was set from 1 to 2.

Figure 9.2: Scented Widgets [85] enhance GUI controls with embedded visualizations
that facilitate navigation in information spaces. The radio buttons on the left illustrate the
number of comments on the two options, whereas the slider on the right is embedded with
a histogram showing the distribution of some bound data values.

While logging and analyzing provenance after analysis has immense value, there is a

need for libraries that aid developers in integrating provenance directly into visual ana-

lytic tools (as opposed to separate tools) in a manner that is consistent with common UI

standards. There exist many open-source libraries of UI controls [268] that enhance user

interaction and facilitate data input in software applications or websites. By utilizing these

libraries, other developers can expedite their development process while ensuring consis-

tency and accessibility across various platforms and devices.

Visualization and HCI researchers have also developed several enhanced UI control

libraries. For instance, Phosphor objects [266] instantly show and explain state transi-
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Figure 9.3: Groupware Widget Toolkit [267] with UI components for collecting, distribut-
ing, and visualizing group awareness information. Three users: David, Carl, and Jason are
simultaneously interacting with the menu items under the ‘GMenu’, and the single slider.

tions in GUI controls, e.g., manipulating a phosphor slider leaves an afterglow that illus-

trates how the knob moved (Figure 9.1). Scented Widgets [85] are enhanced GUI controls

with embedded visualizations that facilitate navigation in information spaces (Figure 9.2).

Groupware Widget Toolkit [267] is a Java toolkit with a broad suite of enhanced UI compo-

nents for collecting, distributing, and visualizing group awareness information (Figure 9.3).

Emotion scents [269] tracks users’ emotional reactions while interacting with GUI widgets

and visualizes these reactions on the widgets, enhancing the interface for emotional aware-

ness and decision support. DynaVis [270] synthesizes persistent UI widgets in response to

an initial natural language (NL)-based visualization editing task, enabling the user to make

subsequent modifications by directly interacting with the widgets (instead of re-typing NL).

However, there is no frontend library of UI controls that tracks and presents provenance

information out of the box during analysis. Tools like TrrackVis (Trrack’s [105] frontend

library) visualize the logged provenance information graph; however, these visualizations
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are available in a separate view/tool, sometimes after analysis. So we asked: how can

developers integrate provenance directly into the user interface of visual data analysis

tools? In response, we built ProvenanceWidgets, as described next.

9.2 ProvenanceWidgets

Perceive

View

Interact

Aggregate view

Temporal view

User

ProvenanceWidgets

Default view

Developer

Provenance
Properties

Controller

Base
Widget

Provenance
API

Data
Binding

All
Properties

All
Events

Base Properties

User Interactions

Provenance
Events

Model

Store
Provenance

Compute
Statistics

Track user interaction
if [freeze]="false"

Overlay Provenance
if [visualize]="true"

Figure 9.4: Overview of ProvenanceWidgets and the underlying Model-View-Controller-
based architecture. The Model stores, computes, and updates the provenance. The View
shows how end-users perceive and interact with the widgets. The Controller describes how
the Model, View, and developers can interact with ProvenanceWidgets.

ProvenanceWidgets is a JavaScript library of UI control elements that track and dynam-

ically overlay a user’s analytic provenance, out of the box. We enhanced radio buttons ,

checkboxes , single sliders , range sliders , dropdowns , mul-

tiselects , and input text fields to track how often (frequency) and when

(recency) a user interacts with them (e.g., selecting a dropdown option) and present visual

overlays showing an aggregated summary as well as a detailed temporal history.

The aggregated summary is presented in a bar chart overlay visualization encoding the

frequency (length) and recency (color) of user interactions with the widget. The detailed
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temporal history is presented as a timeline visualization, enabling users to access granular

information about specific interactions in the past. Below we list our design goals, describe

our design process, and architecture and implementation of the library.

9.2.1 Design Goals

We derived seven design goals based on prior provenance visualization tools [105, 85, 266]

and our own assessment of the capabilities we aim to support. Our overarching design goal

was to consistently achieve the underlying goals for all widgets.

G1 Log User Interactions on UI controls as provenance. The library should auto-

matically track relevant user interactions with the UI controls as provenance (e.g.,

dragging a slider handle or selecting a dropdown option).

G2 Compute Aggregated Metrics about Recency and Frequency of Provenance.

The library should process the logged user interactions and compute aggregate sum-

mary metrics pertaining to interaction recency and frequency.

G3 Dynamically Overlay Provenance on UI controls. The library should enhance UI

controls with a visual overlay of the aggregate summary metrics and an on-demand

temporal evolution of the users’ analytic provenance.

G4 Support Action Recovery. The library should allow navigating historical analysis

states and also updating the current state, both programmatically and by interacting

with the provenance visualization overlays.

G5 Allow Developer Agency. Application developers should have the flexibility to tune

the default tracking and visualization behavior, including being able to disable it

completely. The library should provide an API for the same.

G6 Be Framework-Agnostic. With multiple existing web frameworks (e.g., Angu-

lar [175], React [228]), our goal was to make the library integrable into any codebase.

G7 Support Meta-Analysis. The library should support logging and exporting prove-

nance information in a format that is suitable for different kinds of analysis. For
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example, ProvenanceWidgets’ internal data structure maintains fine-grained logs as

well as higher-level computed aggregates.

9.2.2 Design Process

As part of our design process, we first reviewed UI controls and then conducted design

exercises to decide efficient visual overlays and associated interactions across all of them.

9.2.2.1 UI Controls Review

To establish a clear understanding of UI controls, we first reviewed their structure, layout,

and initial/default values, subsequent values, and associated interaction events.

Structure. All aspects of radio buttons, checkboxes, and (range) sliders are completely

visible at all times; whereas, dropdowns, multiselects, and input text fields require an addi-

tional click and potential scrolling to bring certain aspects (e.g., options) into focus.

Layouts. Dropdowns, multiselects, and input text fields are oriented horizontally with

their menus opening vertically (above or below depending on screen position); whereas,

radio buttons, checkboxes, and (range) sliders can be oriented vertically or horizontally.

Initial/Default Values. Radio buttons, checkboxes, dropdowns, multiselects, and input

text fields, can have an uninitialized state with no (null, empty) selection(s) or value(s);

whereas, (range) sliders must always have at least one selection by default.

Subsequent Values. Radio buttons, dropdowns, input text fields, and (range) sliders can

have at most one selected value; unlike multiselects and checkboxes who can have multiple.

Interaction Events. Radio buttons, checkboxes, dropdowns, and multiselects require the

user to click to (de)select target options. (Range) sliders require the user to drag the han-
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dle(s) to or directly click on the rail at the target value(s). Input text fields require the user

to first type and then press the ‘Enter’ key on keyboards to mark the typing as complete.

9.2.2.2 Design Exercises and Considerations

Next, we conducted design exercises to explore considerations related to what provenance

information to show, where, how, and when.

What metrics to log as provenance. We reviewed existing logging frameworks and

provenance tools and selected two metrics: frequency and recency of user interactions

(G2). We chose these metrics for their relevance to provenance tracking, intuitive compre-

hension, effective visual encoding, and broad applicability across various domains. Fur-

thermore, these metrics can help derive composite metrics such as durations of different

widget states and study interaction patterns within and across widgets.

Where to present provenance. We explored on-demand versus always visible visualiza-

tions and considered whether they should be juxtaposed against each other, or overlaid or

superimposed on the widgets. Then, we discussed the trade-offs of having separate over-

lays against pushing surrounding elements away to accommodate the visual provenance

scents. Inspired by Shneiderman’s Mantra [189], we eventually chose to overlay aggregate

views in-place (overview) and temporal views separately on demand considering the level

of detail in raw interaction data. We designed a tri-state button that would let us toggle

between this different views - default, aggregate, and temporal.

a b c d

Figure 9.5: Alternate designs: range slider, input text, radio button, checkbox.
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How to present provenance. We explored candidate visualization and interaction tech-

niques to overlay and interact with the logged provenance information. We sketched

ideas on draw.io [271] and iterated among co-authors over multiple brainstorming ses-

sions. These low-fidelity sketches included considerations for chart types (e.g., bar charts,

line charts, and horizon charts), visual encodings (e.g., color, opacity, size), and UI layouts

(e.g., panels, overlays). Keeping in mind our overarching goal of ensuring consistency, we

selected the bar mark and size, color encodings to encode frequency and recency infor-

mation (Figure 9.7). Figure 9.5 shows some of our design considerations for sliders, input

texts, radio buttons, and checkboxes. For example, we sketched horizon charts in range

sliders (Figure 9.5(a)) and chips in input texts (b), but did not implement them because

they did not generalize across all widgets. Similarly, stepped line charts in the temporal

view (c) seemed occluding and harder to interact with.

When to log provenance. For each widget, we chose to log and perform provenance

computations on each interaction event that modifies its value (or state); an event that

does not modify a widget’s value, such as mouseover or keyup is not logged. In addition,

clicking a historical analytic state in the visualization overlays of ProvenanceWidgets is

also considered a new interaction and is also appended to the widgets’ provenance.

Additionally, we considered two kinds of logging frequencies – interaction-based, cap-

turing every user interaction when it occurs, and time-based, capturing snapshots at specific

intervals. Finding utility in both, we chose to support both (G1, Figure 9.6).

9.2.3 Chosen Designs

Figure 9.7 shows our chosen designs; the base design (default view) of each widget is

enhanced by the Aggregate View (summary) and a Temporal View (detailed history) (G3).

When the widget has not been interacted with (i.e., there is no logged provenance), a

disabled footprint icon-button is placed next to the UI control. When the widget is
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mode = “interaction” mode = “time”

Figure 9.6: ProvenanceWidgets: [mode]="interaction" and [mode]="time" log in-
teractions every interaction and 1 second (by default), respectively.

interacted with for the first time, this icon-button is enabled, and the widget switches to

the Aggregate view , which overlays aggregate provenance information. Clicking the

footprint icon toggles between this Aggregate view and the Temporal view , that

overlays the temporal history of provenance.

9.2.3.1 Single Slider , Range Slider

Aggregate View. We chose a bar chart overlay that shows previously selected values

(slider) or ranges of values (range slider). The frequency of a selection is encoded by

height, and the recency of a selection is encoded by color. Taller, darker bars indicate more

frequent and recent interactions, respectively. This bar chart is positioned directly above

the slider, as in Scented Widgets [85]. Hovering a bar shows a tooltip with contextual

information. Clicking a bar updates the slider to the selected value or range.

Temporal View. To visualize the temporal evolution, we chose a popover that is overlaid

above or below the slider. Within this popover, we designed a line chart where time is

measured along the y-axis, and the slider itself serves as the x-axis. This line chart has one

line for a single slider and two lines for a range slider (one for each handle). The line(s)
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Figure 9.7: ProvenanceWidgets: UI controls (single slider, range slider, multiselect, radio
button, dropdown, checkbox, and input text) enhanced with an aggregate summary (Aggre-
gate View) as well as a detailed temporal history (Temporal View) of analytic provenance.

have circular points that represent the exact selections made over time. These points are

also colored by the recency of the selections. Hovering a point shows a tooltip with the

corresponding value and time of the selection. In addition, clicking a point updates the

slider to the selected value or range (G4). Lastly, to facilitate navigation, the y-axis can

also be brushed to zoom in on more granular, specific time ranges.

9.2.3.2 Dropdown , Multiselect , Radio Button , Checkbox

We refer to dropdowns, multiselects, radio buttons, and checkboxes as selection-type wid-

gets due to their similar design for visualizing and interacting with provenance information.

Aggregate View. We designed a bar chart and placed it under the options list. An option’s

selection frequency is encoded by the length of the bar underneath it and the recency is

encoded by color. Longer and darker bars indicate higher frequency, recency, respectively.

Hovering a bar shows a tooltip with the value, timestamp, frequency, and recency of the

selection. Clicking a bar updates the option’s selection.
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Temporal View. To visualize the temporal evolution, we directly modified the aggregate

bar chart unlike that in sliders, where we created a new popover. Each bar represents

the time range during which the option was selected. The length of the bar represents

the duration of the selection, and the color represents the recency. Longer, darker bars

indicate higher frequency, recency, respectively. Hovering a bar shows a tooltip with the

corresponding time range. Clicking a bar selects the corresponding option, along with other

options that were selected at that point in time. Lastly, to facilitate navigation, there is a

horizontal range slider to zoom in on more granular, specific time ranges.

9.2.3.3 Input Text

Aggregate View. We utilized a dropdown list of previously entered values and visualized

provenance as a bar chart underneath each list item. The frequency of an input value is

encoded by the length of the bar underneath it, and the recency of a selection is encoded

by color. Longer, darker bars indicate higher frequency, recency, respectively. Hovering a

list item shows a tooltip with the corresponding timestamp, frequency, and recency of the

input value. Clicking a list item updates the text input selection to the corresponding value.

Temporal View. To visualize the temporal evolution, we designed an overlay popover

above or below the text input. Within this popover, we designed a vertical timeline chart

that shows what text input was searched and when. This timeline has circular points that

represent the exact search inputs made over time. These points are also colored by the

recency of the input searches. Hovering a point shows a tooltip with contextual information.

Clicking a point updates the current text input selection to the corresponding value.

9.2.4 Architecture

We define the architecture of ProvenanceWidgets using MVC (Model-View-Controller), a

software design pattern commonly used to develop GUIs (Figure 9.4), described below.
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View: What the user interacts with - The View handles all concerns related to the appear-

ance of the widgets, including the base widgets and the overlaid provenance. Internally, we

define it almost entirely with Angular templates (HTML) and CSS.

Controller: What the developer interacts with - The Controller serves as a hub between

the developer, the View, and the Model. Essentially, it wraps the base widget and exposes

all of its properties and events, in addition to the ProvenanceWidgets API. It passes on

all the base widgets’ properties to the View templates, and intercepts all incoming events

before re-emitting them for the developers. If not frozen, it relays these events and all

provenance-related properties to the Model.

Model: What we interact with - The Model stores the raw interaction data received from

the Controller, and uses it to compute frequency (how many times a value was input) and

recency (how recently a value was input). Once the provenance is updated, the Model can

emit it via the Controller as an event for the developers to subscribe to. Then, if visualiza-

tion is enabled, it updates the View with aggregated summaries of frequency and recency

(Aggregate View) or raw temporal history (Temporal View) depending on the active mode.

9.2.5 Implementation

ProvenanceWidgets is implemented using Angular [175] with an extensible API to sup-

port flexibility across different systems. To ensure portability across frameworks (e.g., Re-

act [228]), we leverage the WebComponents API (G6). Below is an overview of the Prove-

nanceWidgets API with detailed descriptions about the underlying properties (attributes)

and events, followed by how each widget can be implemented in applications.

1 provenance?: SliderProvenance|InputTextProvenance|Provenance

2 mode?: "interaction"|"time"

1 <provenance-{slider,dropdown,multiselect,radiobutton,checkbox,

inputtext}
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2 [(provenance)]="provenance"

3 (provenanceChange)="function($event)"

4 [mode]="mode"

5 [freeze]="false"

6 [visualize]="true"

7 [attr.data-label]="‘label’"

8 />

1. provenance: Information about users’ interaction history that is recorded and computed

by the widget. While each widget has a unique provenance structure, they all record an

array of objects with the selected/input value and a timestamp. This property can be used

to initialize, restore, modify, and export (G7) the provenance of a widget.

2. provenanceChange: An event that is triggered whenever the user interacts with the

widget such that its value (and hence provenance) changes. For example, clicking a

radiobutton option or dragging a range slider handle constitute a valid event; however,

keyup or mouseover events do not contribute to the provenance.

3. mode: This property configures the provenance logging frequency (Figure 9.6). When

‘mode’ is set to “interaction”, the widget logs every user interaction and accordingly

recomputes provenance metrics and updates the subsequent visualizations. When ‘mode’

is set to “time”, the widget logs interactions every ‘t’ seconds (t=1 second by default)

and accordingly updates everything downstream.

4. freeze: A property to stop logging interactions with the widget. When ‘freeze’ is set

to true, the widget will not record any new interactions, and existing visualizations will

not be updated. When ‘freeze’ is set to false, the widget will continue recording and

visualizing the provenance from the last recorded interaction (G4).

5. visualize: A boolean property to toggle the visibility of the provenance overlays. This

property can be used (with ‘freeze’=true) to completely disable provenance (G4, G5).

6. data-label: An attribute to pass additional context (e.g., display a “label” in the tooltip).
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Understanding code snippets and notations. We describe the ProvenanceWidgets API

using TypeScript and Angular’s data binding syntax, categorized based on data flow:

1. From source to view (property binding). [property]="expression" binds the

value from the expression to the property. Can be also used to bind class and style

properties, and data-* attributes.

2. From view to source (event binding). (event)="function($event)" executes

the bound function with the $event object emitted by the event.

3. In both ways (two-way binding). [(property)]="expression" binds the value

from the expression to the property, and vice versa. It is syntactic sugar for combining

property and event binding. For example, [(provenance)] is syntactic sugar for

[provenance] and (provenanceChange).

9.2.5.1 Single Slider , Range Slider

A slider allows users to select a numeric value from a given range. Traditionally defined

as <input type=”range”> in HTML, these elements only allow for a single value to be

selected. We also support Range Sliders, which permit selection of a range of values.

1 value: number = 0

2 highValue?: number = 0 // Omit for Single Slider

3 handleChange(event: ChangeContext) {

4 value = event.value

5 highValue = event.highValue

6 }

7 options: Options = { floor: 0, ceil: 100, step: 1 }

1 <provenance-slider

2 [options]="options"

3 [value]="value"

4 [highValue]="highValue"

5 (selectedChange)="handleChange($event)" />
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A ProvenanceWidgets Slider extends @angular-slider/ngx-slider’s SliderComponent

and exposes an additional selectedChange event which is triggered with each interaction.

9.2.5.2 Text Input

A Text Input allows users to enter text, numbers, and symbols. Traditionally defined as

<input type=”text”> in HTML, these elements create a single-line text input field.

1 value: string = ‘’

1 <provenance-inputtext [(value)]="value" />

A ProvenanceWidgets Text Input extends PrimeNG’s AutoComplete component and

exposes an additional valueChange event which is triggered when the input value changes.

9.2.5.3 Dropdown

A Dropdown allows users to select a single value from a list of options. In HTML, these

elements are defined using the <select> tag and a list of <option> tags nested within it.

1 type Option = { label: string, value: string }

2 options: Option[] = []

3 selected?: Option

1 <provenance-dropdown

2 [options]="options"

3 optionLabel="label"

4 dataKey="value"

5 [(selected)]="selected"

6 />

A ProvenanceWidgets Dropdown extends PrimeNG’s Dropdown component and ex-

poses its options attribute to allow developers to provide their list of options.
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9.2.5.4 Multiselect

A Multiselect input allows users to select multiple values from a list of options. In HTML,

these are defined in the same way as Dropdowns (<select>), but with the multiple attribute

set to true. However, unlike Dropdowns, a Multiselect input renders a list of options and

requires the user to hold down the control key while clicking to select multiple options.

1 selected?: Option[]

1 <provenance-multiselect

2 [options]="options"

3 optionLabel="label"

4 dataKey="value"

5 [(selected)]="selected"

6 />

A ProvenanceWidgets Multiselect extends PrimeNG’s MultiSelect component and ex-

poses its options attribute to allow developers to provide their list of options. Unlike a

traditional multiselect input, this widget renders in a Dropdown-like manner and does not

require users to hold down any keys to select multiple options.

9.2.5.5 Radio Button

A Radiobutton allows users to select a single value from a list of options. In HTML, these

are defined using the <input type=”radio”> tag, and all radio buttons with the same

name attribute are grouped together.

1 selected?: string

1 <provenance-radiobutton

2 [data]="options"

3 [(selected)]="selected"

4 />
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A ProvenanceWidgets Radio Button extends PrimeNG’s RadioButton component. How-

ever, unlike traditional Radio Buttons, this widget represents a group of vertically aligned

self-contained radio buttons. It exposes a data attribute, which allows developers to pro-

vide their list of options instead of having to define each radio button individually.

9.2.5.6 Checkbox

A Checkbox allows users to select or deselect a single value. Checkboxes can be stan-

dalone, or grouped together with the same name attribute. In HTML, these are defined

using the <input type=”checkbox”> tag.

1 selected ?: string[]

1 <provenance-checkbox

2 [data]="options"

3 [(selected)]="selected"

4 />

A ProvenanceWidgets Checkbox widget extends PrimeNG’s Checkbox component.

Like the Radio Button widget, this widget exposes a data attribute, which allows devel-

opers to provide their list of options. All selection-type widgets expose a selected attribute,

that allows developers to provide an initial selection or override the current selection, and

a selectedChange event, triggered when the selection changes.

9.2.6 Example Usage Scenarios

Track Interactions from a Widget to a Visualization. ProvenanceWidgets can help

users track what charts they make (visualization specification) and what filters they apply

(data transformations). Consider Figure 9.8 that shows a scatterplot visualization of two

attributes: “Year” and “Life Expectancy” along with corresponding single slider and range

slider ProvenanceWidgets. As the user drags the slider handle(s): “Year”: 1970 → 1990

and “Life Expectancy”: [40, 80] → [70.2, 80], the scatterplot updates and also the orange
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Figure 9.8: Using ProvenanceWidgets, facilitate and also visualize interactions that specify
or transform a visualization.

provenance overlays become visible. In this way, the user can utilize ProvenanceWidgets

to track already explored data ranges, potentially informing subsequent explorations.

1 const { view } = await embed("spec.vg.json", ...)

2 const slider= document.createElement("web-provenance-slider");

3 slider.value = 0;

4 slider.addEventListener("selectedChange", e => {

5 view.signal("slider", e.detail.value).runAsync()

6 })

In the above listing, the developer consumes ProvenanceWidgets as Web Components

and binds properties and events in JavaScript. They subscribe to "selectedChange" to

update the embedded Vega chart [260].

Track Interactions from a Visualization to a Widget. Because not all user interactions

happen via UI controls, ProvenanceWidgets can be externally updated when user interac-

tions happen elsewhere, e.g., in the visualization. Consider Figure 9.9 that shows a scatter-

plot visualization of two attributes and corresponding ProvenanceWidgets range sliders for
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Figure 9.9: Track and visualize interactions that occur within a visualization (e.g., brush-
ing) directly via ProvenanceWidgets.

“Acceleration” and “Horsepower”. As the user performs a brush interaction in the visual-

ization, selecting a subset of points within a specific range (“Horsepower”: [27.5, 136.1]

and “Acceleration”: [16.7, 23.6]), the corresponding range sliders can update to show this

range. In this way, the user can utilize ProvenanceWidgets to track what data ranges they

have already explored, potentially informing subsequent explorations.

1 visBrushed(brush_extent) {

2 acc.provenance["data"] = [{ ..., "value": brush_extent }]

// [16.7. 23.6];

3 acc.provenance["revalidate"] = true;

4 }

1 <provenance-slider [(provenance)]="acc.provenance" />

In the above listing, the developer subscribes to the visualization’s brush event via "visBrushed

()" and updates the "provenance" of the “Acceleration” ("acc") range slider.
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9.3 Replicating Prior UI Control Libraries Using ProvenanceWidgets

We utilized ProvenanceWidgets to replicate three prior works in improving social navi-

gation cues (Scented Widgets [85]), explaining transitions in the user interface (Phosphor

Objects [266]), and dynamic querying-based [272, 273] or direct manipulation-based [274]

interactions with a visualization system (Dynamic Query Widgets).

9.3.1 Scented Widgets.

Recall Scented Widgets [85] enhance UI controls via embedded visualizations of some pre-

computed metric to facilitate navigation. ProvenanceWidgets can be configured to recreate

these widgets by showing static information about (1) social navigation, e.g., number of

times each radio button option was chosen across multiple users and when (Figure 9.10A–

shades of orange) or (2) data distribution, e.g., distribution of values for that column in the

underlying dataset (Figure 9.10A–blue). To realize the range slider in Figure 9.10A–shades

of orange, the developer can program the widget in the following way:

1 historical_usage_logs = {

2 "revalidate": true,

3 "data": [

4 {"value": [100, 160], "timestamp": _},

5 {"value": [100, 160], "timestamp": _},

6 {"value": [160, 200], "timestamp": _},

7 ...

8 ]

9 }

1 <provenance-slider

2 [freeze]="true"

3 [(provenance)]="historical_usage_logs"

4 />
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In the above listing, the developer passes the "historical_usage_logs" informa-

tion in the format of interaction logs, which is then mapped to the [(provenance)] prop-

erty. The [freeze]="true" property will ensure the widgets don’t update in real-time in

spite of user interactions.

9.3.2 Phosphor Objects.

Recall Phosphor objects [266] track user interactions with UI controls in real-time and leave

visual scents of the most recent and second most recent interaction. ProvenanceWidgets can

be configured to recreate Phosphor objects by limiting the recency of interaction mapping

to the color encoding channel to just include the two most recent interactions (the current

and the previous interaction). That way, every interaction will leave behind a single visual

trace (e.g., light green bar) corresponding to the previous value. This ability to visualize the

present and previous state is akin to the “Present” and “Past” wildcard states in the design

space for guidance, helping users undo or review the previous analysis state, introduced

in chapter 8. To realize the single slider in Figure 9.10B, the developer can program the

widget in the following way:

1 widgetUpdated() {

2 if (provenance) provenance = {

3 "revalidate": true,

4 "data": provenance["data"].slice(-2)

5 }

6 }

1 <provenance-slider

2 [(provenance)]="provenance"

3 (provenanceChange)="widgetUpdated()"

4 />

In the above listing, when a widget is interacted with ("widgetUpdated()"), the
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developer slices the "provenance" array to only keep the two most recent interactions

and then issues the revalidate command to recompute the model and update the view.

SCENTED WIDGETS PHOSPHOR OBJECTSA B DYNAMIC QUERY WIDGETSC

The four interacted 
homes are Single 
Family from 2007. 

System adds dynamic 
query widgets with 
these selections for 
further exploration.

Filter

Interact

Figure 9.10: ProvenanceWidgets can be configured to (re)create the core functionalities
of (a) Scented Widgets, (b) Phosphor Objects, and (c) Dynamic Query Widgets. Scented
Widgets enhance UI controls via embedded visualizations of some pre-computed metric,
e.g., visit frequency and recency (in shades of orange) or data distribution (in blue) to fa-
cilitate navigation. Phosphor objects track user interactions with UI controls in real-time
and leave visual scents of the most recent (dark green) and second most recent (light green)
interaction. Dynamic Query Widgets are UI controls that continuously update a visualiza-
tion and/or its underlying data as the user adjusts them. ProvenanceWidgets can facilitate
creating a dynamic query [272] to lookup affordable (“Price” < $500k) houses with five
“Rooms” and “Lot Config”=Corner and then update the visualization. Alternatively, these
widgets can also be created on the fly, e.g., if a user interacts with “Home Type”=Single
Family and “Year”=2007 houses, the system can add new query widgets for “Home Type”
and “Year” to generalize the user’s selection [274] and facilitate future exploration.

9.3.3 Dynamic Query Widgets.

Dynamic querying. Shneidermann [272] introduced the notion of dynamic queries to

continuously update the data that is filtered from the database and visualized. These queries

ideally work instantly as the user adjusts UI controls such as sliders to form simple queries

or to find patterns or exceptions. Williamson et al. [273] then evaluated this approach in

a real-estate system called HomeFinder. Figure 9.10C shows how ProvenanceWidgets can

create HomeFinder. The developer can program the “Rooms” single slider as follows:

1 // Apply the filter and update the visualization

2 widgetUpdated(model) {}
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1 <provenance-slider

2 [visualize]="false"

3 [freeze]="true"

4 (selectedChange)="widgetUpdated($event.value)"

5 />

In the above listing, the widget is initialized with [freeze]=“true” and [visualize]

=“false”, disabling logging and overlays. When a widget is interacted with ("widgetUpdated

()"), the developer can access the new model, filter the data, and update the visualization.

Direct manipulation. Heer et al. [274] introduced direct manipulation techniques that

couple declarative selection queries with a query relaxation engine, enabling users to inter-

actively generalize their selections using dynamically generated query widgets. For exam-

ple, if a user’s selections on a housing dataset only include “Home Type”=Single Family

and “Year”=2007, then two dynamic query widgets are created: a checkbox group for

“Home Type” with the Single Family option checked; and a single slider for “Year”, preset

to 2007. Figure 9.10C shows how ProvenanceWidgets can support dynamic query wid-

gets created via direct manipulation. To realize the “Year” single slider, the developer can

program the widget as follows:

1 selectedYear = 2007;

2 showWidget = true;

1 <provenance-slider

2 *ngIf="showWidget"

3 [visualize]="false"

4 [freeze]="true"

5 [selected]="selectedYear"

6 />

In the above listing, the widget is created (or made visible) by *ngIf=“showWidget”
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and initialized with [selected]=“selectedYear” (the output of the generalized selection

algorithm). [freeze] and [visualize] are still set to “true” and “false”, respectively.

9.4 Evaluation 1: Cognitive Dimensions of Notation and ProvenanceWidgets

In this section, we describe findings from an author-led assessment of our library, from a

developer standpoint, based on the Cognitive Dimensions of Notation [275], a framework

of heuristics commonly used to assess the effectiveness of notational systems (e.g., visual-

ization grammars and toolkits). Of the 14 cognitive dimensions, we select a relevant subset

for comparing our work with existing tools.

Consistency: Similar semantics are expressed in similar syntactic forms – ProvenanceWid-

gets exposes a common set of provenance-related properties and events, which behave

consistently across all underlying widgets. The notation is also consistent with the base

libraries it inherits from, as well as consistent across different JavaScript frameworks when

used as Web Components.

Diffuseness: Verbosity of language and Hard Mental Operations: high demand on cog-

nitive resources – Since provenance is built into the widgets, developers can directly use

components from the underlying libraries to create provenance-aware widgets. Even ad-

vanced use cases such as persisting, restoring, or modifying the provenance only require

minimal code and cognitive demand. This is in contrast to existing provenance systems

such as Trrack and TrrackVis [105], which require developers to set up states, actions,

event listeners, and other components to capture and visualize provenance.

Viscosity: Difficulty of making changes – The widgets have a low viscosity for primitive

attributes, but a high viscosity for complex attributes. For example, developers can eas-

ily add labels and toggle provenance tracking and visualization. However, changing the

options and provenance data structures requires more effort.
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9.5 Evaluation 2: Developer Case Studies Using ProvenanceWidgets

We present case studies with developers who used ProvenanceWidgets to build a custom

web-based application. Our aim was to evaluate the effectiveness of ProvenanceWidgets

for building provenance-based visual data analysis systems, and to understand developers’

experiences working with it, including installation, configuration, and customization.

9.5.1 Participants and Procedure

Participants. We recruited four developers (P1−4) – 2 men and 2 women in the 18-24 (1)

and 25-34 (3) age groups, and well versed in front-end web development and analysis.

Task. We tasked participants to:

Develop a “Pokemon Explorer” visualization system for a Pokemon Fan Club, to help member

fans visually explore Pokemon names and stats to pick their dream team. The visualization system

should consist of a visualization, and UI controls, that help specify the visualization (e.g., map

variables to visual encodings) and/or beautify it (e.g., modify font styles and color schemes). The

Club wishes to track fans’ interaction behaviors as they explore the data, hence you must use

ProvenanceWidgets as your UI controls to help track and visualize each user’s provenance.

In addition, try to capture relevant user interactions from other, non-ProvenanceWidgets places

in your application, and manually update ProvenanceWidgets. For example, brushing within a

scatterplot visualization should log the brushed extents on either axis and append them to the

provenance data structures of the corresponding attribute filters.

Dataset. We used a dataset of 802 pokemon [276] comprising nine quantitative variables

(Height m, Weight kg, HP, Speed, Attack, Special Attack, Defense, Special Defense, Hap-

piness), five nominal variables (Classification, Name, Primary Type, Secondary Type, Is

Legendary), and two ordinal variables (Pokedex Number, Generation). This variety of vari-

ables enables developers to use different widgets.
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P4

P1

Figure 9.11: Pokemon Explorer applications developed by our participants. Everyone
created a scatterplot-based visualization system using ProvenanceWidgets to apply filters
(P1,2,3,4), specify visual encodings: xy (P1,2,4), color (P1,4), and/or adjust styling (P3,4).

Logistics. We first conducted a 30-minute onboarding interview over Zoom, during which

we sought consent from participants and introduced them to ProvenanceWidgets and the

study task. We also asked them their preference between the Angular components and the

WebComponent versions of the library. Accordingly, we shared with them a Github repos-

itory comprising task and installation instructions, API documentation, and starter code.

Next, we gave participants up to one week to complete the task. During this week, we asked

them to document their experience (e.g., bugs, happy moments) working with the widgets

in a FEEDBACK.md file. If and when stuck, we asked participants to create GitHub issues

or directly email the study administrators. Finally, we conducted a 30-minute debriefing

interview wherein we reviewed the participants’ visualization systems, source code, and

feedback notes. We compensated each participant with a $25 gift card.
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Analysis. We manually transcribed the audio recordings and feedback, divided them into

smaller sections, and applied open coding [185], specifically, constant comparison and

theoretical sampling [277]. Next, we briefly describe the participants’ applications, devel-

opment experience, and feedback on the widgets, including future enhancements.

9.5.2 Results and Discussion

Developed Applications. Figure 9.11 shows four applications developed by our par-

ticipants using Angular (P1,4) and Web components (P2,3). All participants created a

scatterplot-based system using ProvenanceWidgets to apply filters (P1,2,3,4), specify visual

encodings: xy (P1,2,4), color (P1,4), and/or adjust styling (P3,4). P2’s scatterplot visualized

the output of a UMAP [278] dimensionality reduction algorithm that groups more similar

pokemon to be closer to each other. P4 wanted to be able to export the visualizations, hence

they provided additional options to configure the font size, point size, and point opacity.

Only P4 attempted the bonus task, to capture user interactions externally (via brushing in

the visualization) and manually update the provenance on the relevant widget.

Developer Experience. All four developers found ProvenanceWidgets to be useful, com-

mending its built-in capability to track and visualize provenance. P1 said, “I was initially

very surprised and actually very excited like, wow, it’s very well-made, doesn’t really break.

That’s all you can ask for in any library like this.” P3 particularly found the widgets to be

‘self-explanatory’, especially for Angular and Javascript developers. P4 appreciated the

consistent design of the widgets and the ability to externally modify the provenance.

In terms of overall development effort, P1 took approximately 7 hours whereas P2,3,4

took 3-4 hours to set up their visualization system and integrate ProvenanceWidgets. While

P1 found the study to be “time-consuming” but “really fun”, P2,3,4 found the amount of

time and effort to be appropriate. P2 did not find a very steep learning curve and said,

“‘Intuitive’ will be a very good word to describe it.”
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Development Strategies. Participants found the documentation (P1,2,3) and starter code

(P2,3) helpful. P2 said, “The sample code to start with was just very helpful because I

pretty much just modified it to suit my use-case and it just worked. This single-handedly

cut the amount of time I spent in half.” P2,3 requested adding more advanced examples in

the eventual documentation. P1 accessed the original PrimeNG [279] and ngx-slider [280]

documentations to try and customize the dropdown options and slider options, respectively.

P2,4 requested alternate widget layouts, e.g., horizontally laid out radio buttons and check-

boxes (P2) and vertically laid out sliders (P4). These customizations and configurations

are currently restricted and unsupported, respectively, because they would conflict with the

provenance overlay implementation. A takeaway for us is to acknowledge these limitations

in the library documentation and include a roadmap for future features.

9.6 Limitations and Future Work

ProvenanceWidgets may require developers to understand certain core concepts of its de-

pendencies (PrimeNG [279], ngx-slider [280], and Angular [175]), which might lead to

issues and limitations, necessitating workarounds. For example, customizing the option

templates in the dropdowns and re-orienting the sliders, radio buttons, and checkboxes is

currently restricted as it conflicts with the provenance overlays. Future work is planned to

ensure ProvenanceWidgets inherits all base library features.

Next, ProvenanceWidgets also inherits the inherent limitations of standard UI controls

pertaining to scalability and usability. For instance, sliders and dropdowns often struggle

with large ranges and numerous options, respectively. As a workaround, developers can

increase a slider’s step size (reducing the number of selectable values), improving usabil-

ity but sacrificing precision; and dropdown options can be reordered or filtered based on

frequency or recency to ensure already interacted options are always visible and accessible.

Lastly, visualizations often involve multidimensional interactions like brushing and

linking [281] or smart brushing [282], wherein multiple attributes get modified in the same
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interaction. ProvenanceWidgets can currently visualize such provenance independently on

each widget (as shown in Figure 9.9), leading to potential misrepresentation and informa-

tion loss. Future work is planned to track and visualize provenance across multiple widgets.

9.7 Summary

In this chapter, I described ProvenanceWidgets, an open-source JavaScript library of UI

control elements that track and dynamically overlay a user’s analytic provenance, out of

the box. This library includes enhanced implementations of radio buttons , check-

boxes , single sliders , range sliders , dropdowns , multise-

lects , and input text fields that track how often (frequency) and when (re-

cency) a user interacts with them (e.g., selecting a dropdown option) and present visual

overlays showing an aggregated summary as well as a detailed temporal history. By show-

ing the user what they have done so far, these widgets can make the user reflect upon their

present choices to influence subsequent ones. Additionally, if these widgets are preconfig-

ured to show customized information (e.g., interaction behavior of peers), they can be used

to nudge users in specific directions (e.g., interact with previously overlooked aspects).

ProvenanceWidgets is available as open-source software at https://ProvenanceWidgets.

github.io, enabling developers to integrate provenance-tracking into their systems. Ad-

ditionally, because provenance is often a basis for providing guidance, the provenance-

tracking ability of the library can be used to prototype guidance systems. The library is

built using Angular but is universally compatible across different frameworks through Web

Components. The library is also highly customizable, allowing developers to realize a

variety of configurations such as setting the logging frequency or initializing with an ex-

isting provenance log. Using ProvenanceWidgets, we recreated three prior libraries: (1)

Scented Widgets [85], (2) Phosphor objects [266], and (3) Dynamic Query Widgets [272].

Case studies with four developers revealed the effectiveness of ProvenanceWidgets to build

custom applications. For details, I refer the reader to the associated publication [9].
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CHAPTER 10

REFLECTIONS AND FUTURE WORK

In this chapter, I reflect on the works in this dissertation, raise some new questions, and

highlight future opportunities for visualization and human-computer interaction research.

How does the “source” of guidance influence its utilization during data analysis?

In all works described so far, guidance was provisioned based on statistical computations,

be it the data quality and usage metrics in DataPilot and DataCockpit (chapter 3), the

‘smart’ sample testing database in DIY (chapter 4), ‘bias’ metrics [111] in Lumos (chap-

ter 5) and BiasBuzz (chapter 6), and the interaction frequency and recency metrics in Prove-

nanceLens (chapter 7) and ProvenanceWidgets (chapter 9). Guidance was not provisioned

from other entities such as human (non-) experts or artificial intelligence (AI) models.

Literature on guidance has thus far focused on the important dimensions of “why,”

“how,” “what,” and “when” in guided interactions [123, 42]. What about a new dimension–

“from whom”–focusing on the source of guidance–such as humans or AI? Today, guidance

is already being sought from human experts (e.g., an expert analyst or consultant) or groups

of peers (e.g., via community forums such as Stack Overflow [283]). Recently, there has

been a growing expectation for guidance to come from AI [284, 285, 286], even though

this guidance must itself rely on data from experts or groups of humans, or other systems,

to train models and align recommendations with user preferences. Prior work has also em-

phasized and compared seeking guidance from experts and peers [287, 288, 289]. Studying

this dimension is thus important because the effect of source-attribution in providing guid-

ance carries significant implications for offering effective guidance systems.

We have already conducted a preliminary investigation into this new dimension (publi-

cation currently under review [10]), focusing on how users’ perception and utility of guid-
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ance coming from a particular source impacts their performance during data preparation.

In particular, we conducted a between-subjects study with five conditions: guidance from

an (1) AI model, (2) human expert, (3) group of analysts, (4) unattributed guidance (with-

out source attribution), and (5) a control (no-guidance) condition. This design allowed

us to compare source-specific guidance effects against both unattributed guidance and no

guidance. We built a custom data preparation tool for our study, where users selected rele-

vant attributes from an unfamiliar dataset. Depending on the condition, users could request

guidance up to ten times, presented as attribute suggestions (guided attributes). To en-

sure internal validity, we controlled guidance quality by providing seven relevant and three

irrelevant attribute suggestions, randomly selected, to measure source effects.

We found that: (i) guidance benefits users during analysis, with varying effects across

sources; (ii) guidance use shifts across analysis stages; (iii) users verify guidance differently

based on the source; (iv) initial perceptions of source-attributed guidance are lower, but

scores improve post-task, highlighting source-attribution subtleties; (v) while users report

more post-task regret with AI guidance, they also experience increased confidence from it,

suggesting a nuanced role for AI. While future efforts are needed to fully understand the

impact of the source of guidance, our findings suggest systems should be transparent about

it and design guardrails to prevent users’ pre-conceptions and/or misconceptions about a

particular guidance source from driving their analysis. Additionally, this work suggests

potential “side effects” of guidance that may impact analysis, as described next.

Are there any “side effects” of relying too much or too little on guidance?

Today, AI assistance and automation is increasingly being integrated into data-intensive

tasks across a variety of domains. These approaches promise new ways to support analysts,

enabling rapid and enhanced sensemaking by offloading routine but computationally heavy

tasks to machines. However, this shift raises new, important questions: Can people become

too reliant on these technologies, to an extent they (wrongly) assume all guidance received
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to be ‘good’? What if people become too skeptical and (also, wrongly) stop accepting it,

even if it is ‘good’? Also, what if guidance has other detrimental effects to users’ cognition

and sensemaking processes, e.g., lead to fewer insights? It is thus important to balance

human action, AI automation, and human reliance on AI automation.

Overreliance on automation has shown detrimental effects in other domains, including

reduced task performance and eroded trust when users develop incorrect mental models

of AI systems; in fact, people’s reliance on AI has been shown to depend on various con-

textual factors, such as their AI literacy [290], domain expertise [291], and amount of

feedback [292]. Furthermore, several metrics have been proposed that measure people’s

reliance on AI guidance, quantifying people’s “agreement” and “disagreement” with AI

recommendations [293], people’s “acceptance” of incorrect AI recommendations [294],

people’s “change” in behavior based on AI recommendations [295, 286], and people’s

propensity to “delegate” eventual decision-making to AI [296].

So I ask: How can over- and underreliance on AI be modeled and measured during

analysis, and what implications do they have on the design of responsible analysis tools?

Additionally, what negative effects might overreliance on AI guidance introduce to human-

centered processes such as insight discovery and knowledge generation? Addressing these

questions is crucial to ensure guidance tools support (and not hinder) the analysis process.

How can systems “naturally” learn about the user and their intentions?

In DataPilot and DataCockpit (chapter 3), guidance was static, i.e., the data quality and

usage insights were pre-computed and remained unchanged as the user interacted dur-

ing analysis; whereas in Lumos (chapter 5), BiasBuzz (chapter 6), and ProvenanceLens

(chapter 7), the system computed guidance in real-time as the user’s focus evolved during

analysis (using mouseover interactions as a proxy). Similarly, ProvenanceWidgets (chap-

ter 9) tracked user interactions that changed a UI control’s state, e.g., selecting a dropdown

option, dragging a range slider handle, to compute frequency and recency.
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As guidance systems evolve, they have the potential to leverage a variety of interaction

signals beyond traditional mouse and keyboard inputs to better understand users and antici-

pate their needs. For instance, eye-gaze tracking [66] could reveal focal points and attention

spans, while facial expression analysis [68] might help systems interpret user emotions and

adjust accordingly. Hand-gesture detection [68] and touch data [65] could add layers of

physical engagement, allowing systems to interpret more specific user intentions in real

time. Audio inputs, such as speech [65], could enable the system to infer sentiment or even

respond to voice commands. With IoT-enabled devices such as smartwatches [297], the

system might capture contextual cues like movement or physical state, providing deeper

insight into the user’s environment and behaviors. By integrating these multimodal signals,

I envision future guidance systems to elicit user inputs as ‘naturally’ as possible, so the user

can focus on the analysis task-at-hand.

How can users “better contribute” to a co-adaptive guidance dialog with the system?

Guidance systems are effective when the knowledge gap between the user and the system is

continuously minimized as the analysis progresses. For this to occur, both the system and

the user must be ‘brought and kept on the same page’, realizing an effective co-adaptive

guidance dialog between the two. Users can participate and contribute to this dialog by

providing feedback to the system-generated guidance during analysis and by providing

feedforward into the system which can also occur even before analysis begins.

User feedback can take various forms, including explicit responses via accept/reject but-

tons, less certain responses via like/dislike or upvote/downvote rating options, timing ad-

justments (e.g., mute/snooze), or user expressions of less/non-interest (e.g., the “Just Clean-

ing up” button on Netflix [240]), or no response (i.e. ignorance of the system-generated

guidance). Additionally, implicit signals can be derived from interactions with visualiza-

tions, such as via “visualization by demonstration” [298] or “semantic interaction” [79].

Regarding user feedforward, Lumos (chapter 5) allows users to configure three types
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of expected interaction behaviors–proportional, equal, and custom–for the system to ac-

cordingly identify exploration biases. Unlike user feedback, UI affordances for eliciting

feedforward are often bespoke and task-specific, making standardization challenging. Nev-

ertheless, there is potential to develop reusable components for common tasks.

This leads to the overall question: What is the design space for users to provide feed-

back and feedforward to guidance from a system? And in response, how can the system

adapt to these inputs from the user to continue a truly co-adaptive guidance process?

Why just visual? How about “multimodal guidance communication” during analysis?

In DataPilot and DataCockpit (chapter 3), DIY (chapter 4), and Lumos (chapter 5), we pri-

marily relied on visual means to communicate guidance. While the evaluations suggested

this approach can effectively engage most users, it may not fully exploit the potential of

multimodal guidance. We explored multimodality in BiasBuzz (chapter 6), wherein we

incorporated haptic feedback alongside visual cues. BiasBuzz’ evaluation revealed mixed

responses; participants found that the haptic mouse vibrations can be useful in capturing

attention instantly, but can also be distracting and disturbing, suggesting careful considera-

tion is needed to balance the pros and cons.

Going beyond visual and haptic feedback, one can integrate audio cues, ambient light,

or other sensory modalities to communicate guidance. Another modality for communicat-

ing guidance is via augmented reality (AR) and virtual reality (VR) environments. Each

modality has unique strengths and weaknesses, which can differently influence users’ cog-

nitive load and sensemaking processes during analysis. By systematically studying these

modalities–both in isolation and in combination with one another–we may be able to design

truly accessible, enjoyable, and effective multimodal guidance systems for users.

198



“When” to provide guidance and for “how long”?

Timing and duration of guidance are crucial in designing effective guidance systems. For

example, Microsoft PowerPoint [299] can sometimes be annoying with its slide design

guidance, especially without the user explicitly requesting for it. Additionally, unwelcome

or unexpected prompts on websites–like cookie consent or newsletter popups–can detract

the user from the main content, highlighting the importance of not just guiding users but

doing so tactfully. In all works described in this dissertation, guidance was either pre-

computed and always available to user, or pre-computed but only available on user request,

or computed and updated in real-time with every user interaction/operation. In Lotse [47]

– the open-source Python library to design custom guidance strategies – guidance is or-

chestrated through an ‘inference loop’ and a ‘guidance loop’; in the inference loop, the

system determines which strategies are currently active and should potentially generate

suggestions; this loop runs every 30 seconds by default, whereas the guidance loop is trig-

gered every second; together, both these loops determine if and what guidance must be

provisioned. But I ask: Are these the only/best strategies to time the guidance?

Determining when and how often to offer guidance may be a balancing act. It could

be delivered continuously, on demand (allowing the user to request it only when needed),

periodically (triggered at set intervals), or randomly, based on usage patterns and user en-

gagement. Systems might also explore context-aware guidance that considers the user state

and task complexity, appearing only when it has inferred the user could benefit from it.

Once guidance is presented, its duration should respect the user’s workflow, ensuring it

doesn’t become a distraction if too prolonged or cause confusion if too brief. If the user

responds to the guidance, the system must carefully judge when to reintroduce suggestions

to avoid interrupting the user’s independent analysis process. Thoughtful timing and appro-

priate duration could make guidance feel less like an imposition and more like an adaptive,

supportive layer that enhances rather than disrupts the user’s analytical journey.
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How to conduct effective evaluations of guidance systems?

Designing and evaluating guidance systems is challenging due to the difficulty of cap-

turing authentic, meaningful feedback from users, even if it is captured ‘naturally’ via

interactions, gestures, and expressions during analysis or ‘directly’ via feedback forms be-

fore/after the study. Short user study tasks, while manageable in a research setting, may fail

to capture the depth of how users truly perceive and engage with guidance. For example,

while conducting pilot studies using ProvenanceLens (chapter 7), our participants ignored

or underutilized the provisioned guidance, as the study setup did not require repeated or

prolonged interactions, and users could just rely on their memory to successfully complete

the task(s). This observation made us refine our actual task to encourage the intended inter-

action behavior. However, even such refinements may fall short of simulating real, complex

analytical workflows. So I ask: How can user study designs for evaluating systems realis-

tically reflect complex analytical workflows? Would longer or multi-session studies (e.g.,

MILCs [300]) provide more credible insights into how guidance is perceived and utilized?

I believe determining appropriate metrics and methodologies for evaluating guidance

systems poses some challenges. For example, Wall et al.’s [111] ‘bias’ metrics, that we

utilized in Lumos (chapter 5), do not consider the recency of interactions when detecting

biases. In ProvenanceLens (chapter 7), we considered both frequency and recency of inter-

actions but did not weight recent interactions more. Quantifiable metrics aside, subjective

measures such as users’ self-reported trust and reliance on the guidance, the kind we ad-

ministered in our crowdsourced study to measure the effect of the guidance source (e.g.,

human or AI) [10], are also important signals. Lastly, what about metrics that authors can

self-evaluate their systems against? For example, Ceneda et al. [41] proposed five qualities

for evaluating guidance systems in terms of how accessible, reliable, context-aware, user-

adjustable, and minimally intrusive they are. With so many nuanced aspects, I call for a

comprehensive methodology to ensure internal and/or external validity of the evaluations.
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How can we continue to empower others to build their own guidance systems?

Building guidance-enriched systems can be challenging, as it requires developers to inte-

grate frontend and/or backend components while addressing complex questions related to

the domain (“what”), timing (“when”), means (“how”), and objectives (“why”) of guid-

ance. This necessitates open-source tools that enable developers to focus on determin-

ing the guidance-related strategy and designing the user experience, without being bogged

down by low-level implementation details. While Lotse’s Python library and declarative

grammar [47] have made it easier, there remains a significant gap in tooling, especially in

frontend user interfaces that enable real-time interactions between users and the system.

Trrack [105] and ProvenanceWidgets [9] (chapter 9) took a first step offering re-usable

guidance components for tracking and visualizing analytic provenance in the frontend.

However, these tools need to evolve further, supporting customizable, bidirectional inter-

actions that allow users to both receive and respond to guidance. Beyond the technical ben-

efits, fostering an open-source ecosystem around these tools can encourage community-

driven innovation, where developers share insights, extend functionality, and refine best

practices. Such an ecosystem would also prioritize scalability and interoperability, en-

suring tools work across diverse domains and smoothly integrate into existing workflows.

Lastly, to truly empower developers, the ecosystem must also offer comprehensive doc-

umentation, educational resources, and testing and evaluation frameworks that allow for

systematic benchmarking of guidance strategies. I believe building this ecosystem can sig-

nificantly lower the entry barrier for creating powerful yet customizable guidance systems.
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CHAPTER 11

FINAL THOUGHTS

Designing, Developing, and Democratizing Guidance for Visual Analytics. Through

this dissertation, I validated that, “Facilitating co-adaptive guidance in mixed-initiative

user interfaces, wherein the user and the system learn from and take initiatives on behalf of

each other, enhances human-data interaction experiences as well as analytic processes and

outcomes, while promoting the design of new tools that broaden access for researchers,

developers, and practitioners alike.” In doing so, I made the following contributions to

visualization and human-computer interaction literature, with complementary contributions

to database, ubiquitous computing, deep learning, and artificial intelligence literature:

Design, Implementation, and Evaluation of Techniques and Systems

• A data preparation system that presents data quality & usage metrics to guide users in

selecting effective subsets from large, unfamiliar datasets (DataPilot [4], chapter 3).

• A mixed-initiative visual data analysis system, that presents real-time visual traces of

a user’s interactions (“interaction traces”), to increase awareness of biased analytic

behaviors against configurable target analytic behaviors (Lumos [27], chapter 5).

• A mixed-initiative system that provides multimodal guidance (visual + haptic) to

mitigate biased analytic behaviors during data analysis (BiasBuzz [7], chapter 6).

Design, Implementation, and Evaluation of System Test-beds / Playgrounds

• A question-answering system, integrated with an interactive, self-service debugging

view, to help users debug natural language to SQL workflows (DIY [26], chapter 4).

• A visual data analysis system as a test-bed for demonstrating (and studying) the

design spaces for provenance communication (ProvenanceLens [11], chapter 7).
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• A visual data analysis system as a test-bed for demonstrating (and studying) the

design spaces for guidance communication (Lighthouse [12], chapter 8).

Empirical Evaluations

• A series of in-lab and crowdsourced studies to understand how human biases (e.g.,

gender) impact the way people make decisions during analysis (Left, Right, and Gen-

der [25], section 5.4). We found some evidence that “interaction traces” can increase

awareness of unconscious biases, but additional confirmatory studies are needed.

• A crowdsourced study [10] to understand how the source of guidance–such as AI

model or human expert–impacts people’s perception and usage of guidance during

analysis (chapter 10). We found that the source of guidance matters to users, but

not in a manner that matches received wisdom; users utilize guidance differently,

expressing varying levels of regret, despite receiving guidance of similar quality.

Design Spaces

• A design space for communicating analytic provenance by modeling it as an attribute,

and mapping it to visual encodings and data transformations during analysis (Prove-

nanceLens [11], chapter 7).

• A design space for communicating guidance by modeling it as a state-space (past,

present, problem, future) and presenting different levels (e.g., 1, 2, 3) via adaptive UI

elements–visualizations, UI controls, external panels (Lighthouse [12], chapter 8).

Open-Source Libraries and Toolkits

• A Python toolkit that helps developers compute data quality and usage information

from data lakes, along with a companion data visualization system to guide database

administrators to navigate and monitor data lakes (DataCockpit [5], chapter 3).

• A JavaScript library of UI controls that helps developers prototype custom web ap-

plications with provenance-tracking (ProvenanceWidgets [9], chapter 9).
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In closing, I would just like to say that having journeyed through this forest that is visual-

ization and HCI research, I take pride in having enjoyed the fruits of existing trees, nurtured

new saplings, and sown fresh seeds, with the hope of seeing them continue to thrive to their

potential. Along the way, I met many wanderers, each on their own unique journey but

sharing a similar pursuit. I learned and grew from them, and perhaps even shared lessons

of my own. While all of this brings me joy, I remain unsatisfied, as this forest needs con-

stant care to sustain its current growth and more plantations to support future generations.

Also, as in life, times will often be hard, but I will remember – and hope others will reflect

on – “Life is a constant dance between one’s desire and destiny; embrace it.”
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[45] F. Sperrle, H. Schäfer, D. Keim, and M. El-Assady, “Learning Contextualized User
Preferences for Co-Adaptive Guidance in Mixed-Initiative Topic Model Refine-
ment,” in Computer Graphics Forum, Wiley Online Library, vol. 40, 2021, pp. 215–
226.

[46] F. Sperrle, M. El-Assady, A. Arleo, and D. Ceneda, “A Wizard of Oz Study of
Guidance Strategies and Dynamics,” IEEE Transactions on Visualization and Com-
puter Graphics, pp. 1–15, 2024.

208



[47] F. Sperrle, D. Ceneda, and M. El-Assady, “Lotse: A Practical Framework for Guid-
ance in Visual Analytics,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 29, no. 1, pp. 1124–1134, 2023.

[48] D. Ceneda, T. Gschwandtner, and S. Miksch, “A Review of Guidance Approaches
in Visual Data Analysis: A Multifocal Perspective,” in Computer Graphics Forum,
Wiley Online Library, vol. 38, 2019, pp. 861–879.

[49] K. Xu, A. Ottley, C. Walchshofer, M. Streit, R. Chang, and J. Wenskovitch, “Sur-
vey on the Analysis of User Interactions and Visualization Provenance,” Computer
Graphics Forum, vol. 39, no. 3, pp. 757–783, 2020.

[50] Z. Zhou, W. Wang, M. Guo, Y. Wang, and D. Gotz, “A Design Space for Surfacing
Content Recommendations in Visual Analytic Platforms,” IEEE Transactions on
Visualization and Computer Graphics, vol. 29, no. 1, pp. 84–94, 2023.

[51] W. A. Pike, J. Stasko, R. Chang, and T. A. O’Connell, “The Science of Interaction,”
Information Visualization, vol. 8, no. 4, pp. 263–274, 2009. eprint: https://doi.org/
10.1057/ivs.2009.22.

[52] C. North et al., “Analytic Provenance: Process + Interaction + Insight,” in Extended
Abstracts of the CHI Conference on Human Factors in Computing Systems, Asso-
ciation for Computing Machinery, 2011, pp. 33–36.

[53] E. D. Ragan, A. Endert, J. Sanyal, and J. Chen, “Characterizing Provenance in
Visualization and Data Analysis: An Organizational Framework of Provenance
Types and Purposes,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 22, no. 1, pp. 31–40, 2016.

[54] Buneman, Peter, “Characterizing Data Provenance,” in Advances in Databases:
17th British National Conference on Databases, Springer, 2000.

[55] M. Card, Readings in Information Visualization: Using Vision to Think. Morgan
Kaufmann, 1999.

[56] M. Hegarty, “Diagrams in the Mind and in the World: Relations between Internal
and External visualizations,” in International Conference on Theory and Applica-
tion of Diagrams, Springer, 2004, pp. 1–13.

[57] W. I. D. Mining, Introduction to Data Mining. Springer, 2006.

[58] K. A. Cook and J. J. Thomas, “Illuminating the Path: The Research and Devel-
opment Agenda for Visual Analytics,” Pacific Northwest National Lab.(PNNL),
Richland, WA (United States), Tech. Rep., 2005.

209

https://doi.org/10.1057/ivs.2009.22
https://doi.org/10.1057/ivs.2009.22


[59] P. Pirolli and S. Card, “The Sensemaking Process and Leverage Points for Analyst
Technology as Identified Through Cognitive Task Analysis,” in Proceedings of In-
ternational Conference on Intelligence Analysis, McLean, VA, USA, vol. 5, 2005,
pp. 2–4.

[60] G. Klein, B. Moon, and R. Hoffman, “Making Sense of Sensemaking 2: A Macrocog-
nitive Model,” IEEE Intelligent Systems, vol. 21, no. 5, pp. 88–92, 2006.

[61] D. A. Keim, F. Mansmann, J. Schneidewind, J. Thomas, and H. Ziegler, “Visual
Analytics: Scope and Challenges,” in Visual Data Mining, Springer, 2008, pp. 76–
90.

[62] P. Booth, N. Gibbins, and S. Galanis, “Towards a Theory of Analytical Behaviour:
A Model of Decision-Making in Visual Analytics,” in Proceedings of the 52nd
Hawaii International Conference on System Sciences, 2019.

[63] W. Fikkert, M. D’Ambros, T. Bierz, and T. Jankun-Kelly, “Interacting with Visual-
izations,” in Human-Centered Visualization Environments: GI-Dagstuhl Research
Seminar, Dagstuhl Castle, Germany, March 5-8, 2006, Revised Lectures, Springer,
2007, pp. 77–162.

[64] M. O. Ward, G. Grinstein, and D. Keim, Interactive Data Visualization: Founda-
tions, Techniques, and Applications. AK Peters/CRC Press, 2010.

[65] A. Saktheeswaran, A. Srinivasan, and J. Stasko, “Touch? Speech? or Touch and
Speech? Investigating Multimodal Interaction for Visual Network Exploration and
Analysis,” IEEE Transactions on Visualization and Computer Graphics, vol. 26,
no. 6, pp. 2168–2179, 2020.

[66] A. Srinivasan, J. Ellemose, P. W. Butcher, P. D. Ritsos, and N. Elmqvist, “Attention-
Aware Visualization: Tracking and Responding to User Perception Over Time,”
arXiv, 2024.

[67] J. Thompson, A. Srinivasan, and J. Stasko, “Tangraphe: Interactive Exploration of
Network Visualizations using Single Hand, Multi-touch Gestures,” in Proceedings
of the 2018 International Conference on Advanced Visual Interfaces, 2018, pp. 1–
5.

[68] D. McDuff, R. e. Kaliouby, K. Kassam, and R. Picard, “Acume: A New Visualiza-
tion Tool for Understanding Facial Expression and Gesture Data,” in 2011 IEEE
International Conference on Automatic Face & Gesture Recognition (FG), 2011,
pp. 591–596.

210



[69] M. Pohl, M. Smuc, and E. Mayr, “The User Puzzle—Explaining the Interaction
with Visual Analytics Systems,” IEEE Transactions on Visualization and Computer
Graphics, vol. 18, no. 12, pp. 2908–2916, 2012.

[70] E. T. Brown et al., “Finding Waldo: Learning about Users from their Interac-
tions,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 1663–1672, 2014.

[71] G. A. Miller, “The Magical Number Seven, Plus or Minus Two: Some Limits on
Our Capacity for Processing Information,” Psychological Review, vol. 101, no. 2,
p. 343, 1994.

[72] Z. Liu and J. Heer, “The Effects of Interactive Latency on Exploratory Visual Anal-
ysis,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2122–2131, 2014.

[73] J. Perry, C. D. Janneck, C. Umoja, and W. M. Pottenger, “Supporting Cognitive
Models of Sensemaking in Analytics Systems,” DIMACS, 2009.

[74] P. H. Nguyen, K. Xu, A. Bardill, B. Salman, K. Herd, and B. W. Wong, “SenseMap:
Supporting Browser-based Online Sensemaking through Analytic Provenance,” in
IEEE VAST, 2016.

[75] K. Madanagopal, E. D. Ragan, and P. Benjamin, “Analytic Provenance in Practice:
The Role of Provenance in Real-World Visualization and Data Analysis Environ-
ments,” IEEE Computer Graphics and Applications, vol. 39, no. 6, pp. 30–45, 2019.

[76] Z. Bylinskii et al., “Learning Visual Importance for Graphic Designs and Data
Visualizations,” in ACM UIST, 2017.

[77] S. Gomez and D. Laidlaw, “Modeling Task Performance for a Crowd of Users from
Interaction Histories,” in ACM CHI, 2012.

[78] A. Walch, M. Schwärzler, C. Luksch, E. Eisemann, and T. Gschwandtner, “Light-
guider: Guiding interactive lighting design using suggestions, provenance, and qual-
ity visualization,” IEEE Transactions on Visualization and Computer Graphics,
vol. 26, no. 1, pp. 569–578, 2020.

[79] A. Endert, P. Fiaux, and C. North, “Semantic Interaction for Sensemaking: Inferring
Analytical Reasoning for Model Steering,” IEEE Transactions on Visualization and
Computer Graphics, vol. 18, no. 12, pp. 2879–2888, 2012.

[80] L. Bavoil et al., “Vistrails: Enabling Interactive Multiple-View Visualizations,” in
VIS 05. IEEE Visualization, 2005., IEEE, 2005, pp. 135–142.

211



[81] Y. B. Shrinivasan, D. Gotz, and J. Lu, “Connecting the Dots in Visual Analysis,” in
IEEE VAST, 2009.

[82] Y. Chen, S. Barlowe, and J. Yang, “Click2annotate: Automated insight externaliza-
tion with rich semantics,” in 2010 IEEE Symposium on Visual Analytics Science
and Technology, IEEE, 2010, pp. 155–162.

[83] S. Gratzl, A. Lex, N. Gehlenborg, N. Cosgrove, and M. Streit, “From Visual Ex-
ploration to Storytelling and Back Again,” in Computer Graphics Forum, 2016.

[84] M. Feng, C. Deng, E. M. Peck, and L. Harrison, “HindSight: Encouraging Explo-
ration through Direct Encoding of Personal Interaction History,” IEEE Transactions
on Visualization and Computer Graphics, vol. 23, no. 1, pp. 351–360, 2017.

[85] W. Willett, J. Heer, and M. Agrawala, “Scented widgets: Improving Navigation
Cues with Embedded Visualizations,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 13, no. 6, pp. 1129–1136, 2007.

[86] J. E. Block, S. Esmaeili, E. D. Ragan, J. R. Goodall, and G. D. Richardson, “The
Influence of Visual Provenance Representations on Strategies in a Collaborative
Hand-off Data Analysis Scenario,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 29, no. 1, pp. 1113–1123, 2023.

[87] C. Dunne, N. Henry Riche, B. Lee, R. Metoyer, and G. Robertson, “GraphTrail:
Analyzing Large Multivariate, Heterogeneous Networks while Supporting Explo-
ration History,” in Proceedings of the SIGCHI conference on Human Factors in
Computing Systems, 2012, pp. 1663–1672.

[88] A. Skopik and C. Gutwin, “Improving Revisitation in Fisheye Views with Visit
Wear,” in Proceedings of the SIGCHI conference on Human Factors in Computing
Systems, 2005, pp. 771–780.

[89] A. Wattenberger, Footsteps for VS Code, https : / /marketplace .visualstudio .com/
items?itemName=Wattenberger.footsteps, 2021.

[90] K. Gadhave, Z. Cutler, and A. Lex, “Persist: Persistent and Reusable Interactions
in Computational Notebooks,” in Computer Graphics Forum, 2024.

[91] K. Eckelt, K. Gadhave, A. Lex, and M. Streit, “Loops: Leveraging Provenance and
Visualization to Support Exploratory Data Analysis in Notebooks,” OSF Preprint,
2023.

[92] Y. Ding et al., “reVISit: Supporting Scalable Evaluation of Interactive Visualiza-
tions,” in 2023 IEEE Visualization and Visual Analytics (VIS), 2023, pp. 31–35.

212

https://marketplace.visualstudio.com/items?itemName=Wattenberger.footsteps
https://marketplace.visualstudio.com/items?itemName=Wattenberger.footsteps


[93] T. Ellkvist, D. Koop, E. W. Anderson, J. Freire, and C. Silva, “Using Provenance
to Support Real-Time Collaborative Design of Workflows,” in Provenance and An-
notation of Data and Processes, 2008.

[94] A. Sarvghad and M. Tory, “Exploiting Analysis History to Support Collaborative
Data Analysis,” in Proceedings of the 41st Graphics Interface Conference, 2015,
pp. 123–130.

[95] S. K. Badam, Z. Zeng, E. Wall, A. Endert, and N. Elmqvist, “Supporting Team-First
Visual Analytics through Group Activity Representations..”

[96] Google Analytics, https://marketingplatform.google.com/about/analytics.

[97] Mixpanel, https://mixpanel.com.

[98] A. Drachen, “Behavioral Telemetry in Games User Research,” Game User Experi-
ence Evaluation, pp. 135–165, 2015.

[99] T. C. Kohwalter, L. G. P. Murta, and E. W. G. Clua, “Capturing Game Telemetry
with Provenance,” in 2017 16th Brazilian Symposium on Computer Games and
Digital Entertainment (SBGames), IEEE, 2017, pp. 66–75.

[100] C.-U. Lim and D. F. Harrell, “Toward Telemetry-driven Analytics for Understand-
ing Players and their Avatars in Videogames,” in Proceedings of the 33rd Annual
ACM Conference Extended Abstracts on Human Factors in Computing Systems,
2015, pp. 1175–1180.

[101] P. Cowley, L. Nowell, and J. Scholtz, “Glass Box: An Instrumented Infrastruc-
ture for Supporting Human Interaction with Information,” in Proceedings of the
38th Annual Hawaii International Conference on System Sciences, 2005, pp. 296c–
296c.

[102] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T. Vo,
“VisTrails: Visualization meets Data Management,” in Proceedings of the 2006
ACM SIGMOD international conference on Management of data, 2006, pp. 745–
747.

[103] W. Aigner, S. Hoffmann, and A. Rind, “EvalBench: A Software Library for Visu-
alization Evaluation,” in Computer Graphics Forum, Wiley Online Library, vol. 32,
2013, pp. 41–50.

[104] M. Okoe and R. Jianu, “GraphUnit: Evaluating Interactive Graph Visualizations
Using Crowdsourcing,” in Computer Graphics Forum, Wiley Online Library, vol. 34,
2015, pp. 451–460.

213

https://marketingplatform.google.com/about/analytics
https://mixpanel.com


[105] Z. Cutler, K. Gadhave, and A. Lex, “Trrack: A Library for Provenance-Tracking
in Web-Based Visualizations,” in 2020 IEEE Visualization Conference (VIS), 2020,
pp. 116–120.

[106] Hotjar, https://www.hotjar.com.

[107] M. Feng, E. Peck, and L. Harrison, “Patterns and Pace: Quantifying Diverse Ex-
ploration Behavior with Visualizations on the Web,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. 25, no. 1, pp. 501–511, 2019.

[108] A. Ottley, R. Garnett, and R. Wan, “Follow The Clicks: Learning and Anticipat-
ing Mouse Interactions During Exploratory Data Analysis,” in Computer Graphics
Forum, Wiley Online Library, vol. 38, 2019, pp. 41–52.

[109] D. Gotz, S. Sun, and N. Cao, “Adaptive Contextualization: Combating Bias During
High-Dimensional Visualization and Data Selection,” in Proceedings of the 21st
International Conference on Intelligent User Interfaces, 2016, pp. 85–95.

[110] Z. Zhou, X. Wen, Y. Wang, and D. Gotz, “Modeling and Leveraging Analytic Focus
During Exploratory Visual Analysis,” in Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems. New York, NY, USA: Association for
Computing Machinery, 2021, ISBN: 9781450380966.

[111] E. Wall, L. M. Blaha, L. Franklin, and A. Endert, “Warning, Bias May Occur: A
Proposed Approach to Detecting Cognitive Bias in Interactive Visual Analytics,” in
2017 IEEE Conference on Visual Analytics Science and Technology (VAST), 2017,
pp. 104–115.

[112] J. Heer, J. Mackinlay, C. Stolte, and M. Agrawala, “Graphical Histories for Visual-
ization: Supporting Analysis, Communication, and Evaluation,” IEEE Transactions
on Visualization and Computer Graphics, vol. 14, no. 6, pp. 1189–1196, 2008.

[113] S. Kaasten, S. Greenberg, and C. Edwards, “How People Recognise Previously
Seen Web Pages from Titles, URLs and Thumbnails,” in HCI, 2002.

[114] W. C. Hill, J. D. Hollan, D. Wroblewski, and T. McCandless, “Edit Wear and Read
Wear,” in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 1992, pp. 3–9.

[115] J. Alexander, A. Cockburn, S. Fitchett, C. Gutwin, and S. Greenberg, “Revisit-
ing Read Wear: Analysis, Design, and Evaluation of a Footprints Scrollbar,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
2009, pp. 1665–1674.

214

https://www.hotjar.com


[116] W. Oliveira, L. M. Ambrósio, R. Braga, V. Ströele, J. M. David, and F. Campos,
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